线路规划,寻路算法介绍及代码实现

线路规划,寻路算法介绍及代码实现

    正在检查是否收录...

寻路算法是计算机图形学和人工智能领域中常用的算法之一,用于计算从一个点到另一个点的最短路径或最优路径。在本文中,我将详细介绍两种常用的寻路算法:Dijkstra算法和A*算法。

Dijkstra算法

Dijkstra算法是一种广度优先搜索算法,用于寻找图中两点之间的最短路径。算法的思路如下:

创建一个集合S,用于存放已经找到最短路径的顶点。

创建一个集合Q,用于存放还未找到最短路径的顶点。

初始化距离数组dist,将起始点到其余点的距离设置为无穷大,起始点到自身的距离设置为0。

重复以下步骤,直到集合Q为空:

  • 在集合Q中找到距离起始点最近的顶点u,并将其加入集合S。
  • 对于顶点u的每个邻居顶点v,更新起始点到v的距离dist[v],如果dist[v] > dist[u] + edge(u, v),则更新dist[v]为dist[u] + edge(u, v)。

最终,dist数组中存储的就是起始点到各个顶点的最短路径。

下面是使用C#实现的Dijkstra算法的源代码:

class DijkstraAlgorithm { private int[,] graph; private int size; public DijkstraAlgorithm(int[,] graph) { this.graph = graph; this.size = graph.GetLength(0); } public int[] FindShortestPath(int start, int end) { int[] dist = new int[size]; bool[] visited = new bool[size]; for (int i = 0; i < size; i++) { dist[i] = int.MaxValue; visited[i] = false; } dist[start] = 0; for (int count = 0; count < size - 1; count++) { int u = GetMinDistance(dist, visited); visited[u] = true; for (int v = 0; v < size; v++) { if (!visited[v] && graph[u, v] != 0 && dist[u] != int.MaxValue && dist[u] + graph[u, v] < dist[v]) { dist[v] = dist[u] + graph[u, v]; } } } return dist; } private int GetMinDistance(int[] dist, bool[] visited) { int minDist = int.MaxValue; int minIndex = -1; for (int v = 0; v < size; v++) { if (!visited[v] && dist[v] <= minDist) { minDist = dist[v]; minIndex = v; } } return minIndex; } }

A算法

A算法是一种启发式搜索算法,用于寻找图中两点之间的最短路径。算法的思路如下:

创建一个优先队列openSet,用于存放待探索的顶点。

创建一个数组gScore,用于存放起始点到每个顶点的实际代价。

创建一个数组fScore,用于存放起始点通过每个顶点到达目标点的估计代价。

将起始点加入openSet,并将gScore[start]设置为0,fScore[start]设置为起始点到目标点的估计代价。

重复以下步骤,直到openSet为空:

  • 在openSet中找到fScore最小的顶点current。
  • 如果current等于目标点,表示已经找到最短路径,返回路径。
  • 将current从openSet中移除。
  • 对于current的每个邻居顶点neighbor,计算从起始点到neighbor的实际代价tempGScore,如果tempGScore小于gScore[neighbor],更新gScore[neighbor]为tempGScore,并计算fScore[neighbor] = gScore[neighbor] + 估计代价。如果neighbor不在openSet中,将其加入openSet。

如果openSet为空,表示无法到达目标点,返回空。

下面是使用Java实现的A*算法的源代码:

import java.util.*; class AStarAlgorithm { private int[][] graph; private int size; public AStarAlgorithm(int[][] graph) { this.graph = graph; this.size = graph.length; } public List<Integer> findShortestPath(int start, int end) { PriorityQueue<Node> openSet = new PriorityQueue<>(); int[] gScore = new int[size]; int[] fScore = new int[size]; int[] cameFrom = new int[size]; boolean[] visited = new boolean[size]; Arrays.fill(gScore, Integer.MAX_VALUE); Arrays.fill(fScore, Integer.MAX_VALUE); Arrays.fill(cameFrom, -1); gScore[start] = 0; fScore[start] = heuristicCostEstimate(start, end); openSet.offer(new Node(start, fScore[start])); while (!openSet.isEmpty()) { int current = openSet.poll().index; if (current == end) { return reconstructPath(cameFrom, current); } visited[current] = true; for (int neighbor = 0; neighbor < size; neighbor++) { if (graph[current][neighbor] != 0 && !visited[neighbor]) { int tempGScore = gScore[current] + graph[current][neighbor]; if (tempGScore < gScore[neighbor]) { cameFrom[neighbor] = current; gScore[neighbor] = tempGScore; fScore[neighbor] = gScore[neighbor] + heuristicCostEstimate(neighbor, end); if (!openSet.contains(new Node(neighbor, fScore[neighbor]))) { openSet.offer(new Node(neighbor, fScore[neighbor])); } } } } } return null; } private int heuristicCostEstimate(int start, int end) { // 估计代价的计算方法,例如欧几里得距离、曼哈顿距离等 return Math.abs(end - start); } private List<Integer> reconstructPath(int[] cameFrom, int current) { List<Integer> path = new ArrayList<>(); path.add(current); while (cameFrom[current] != -1) { current = cameFrom[current]; path.add(0, current); } return path; } private class Node implements Comparable<Node> { public int index; public int fScore; public Node(int index, int fScore) { this.index = index; this.fScore = fScore; } @Override public int compareTo(Node other) { return Integer.compare(this.fScore, other.fScore); } @Override public boolean equals(Object obj) { if (this == obj) { return true; } if (obj == null || getClass() != obj.getClass()) { return false; } Node other = (Node) obj; return index == other.index; } @Override public int hashCode() { return Objects.hash(index); } } }

以上是对Dijkstra算法和A*算法的详细介绍,包括算法思路、过程和使用C#或Java实现的源代码。这两种算法都是常用的寻路算法,可以根据具体需求选择使用。
当然在现在的城市里导航软件软件可以给我们规划好。

rapivacodeidejava人工智能计算机图形学计算机图形semetlurl
  • 本文作者:李琛
  • 本文链接: https://wapzz.net/post-3785.html
  • 版权声明:本博客所有文章除特别声明外,均默认采用 CC BY-NC-SA 4.0 许可协议。
本站部分内容来源于网络转载,仅供学习交流使用。如涉及版权问题,请及时联系我们,我们将第一时间处理。
文章很赞!支持一下吧 还没有人为TA充电
为TA充电
还没有人为TA充电
0
  • 支付宝打赏
    支付宝扫一扫
  • 微信打赏
    微信扫一扫
感谢支持
文章很赞!支持一下吧
关于作者
2.3W+
5
0
1
WAP站长官方

华为盘古大模型预测台风未来路径只要10秒 以前5小时

上一篇

Stable Diffusion - Stable Diffusion WebUI 支持 SDXL 1.0 模型的环境配置

下一篇
  • 复制图片
按住ctrl可打开默认菜单