JS 的 AI 时代来了!

JS 的 AI 时代来了!

    正在检查是否收录...

JS-Torch 简介

JS-Torch[1] 是一个从零开始构建的深度学习 JavaScript 库,其语法与 PyTorch[2] 非常接近。它包含一个功能齐全的张量对象(可跟踪梯度)、深度学习层和函数,以及一个自动微分引擎。

图片

PyTorch 是一个开源的深度学习框架,由 Meta 的人工智能研究团队开发和维护。它提供了丰富的工具和库,用于构建和训练神经网络模型。PyTorch 的设计理念是简单、灵活,以及易于使用,它的动态计算图特性使得模型的构建更加直观和灵活。

你可以通过 npm 或 pnpm 来安装 js-pytorch:

npm install js-pytorch pnpm add js-pytorch

或者在线体验 js-pytorch 提供的 Demo[3]:

图片

https://eduardoleao052.github.io/js-torch/assets/demo/demo.html

JS-Torch 已支持的功能

目前 JS-Torch 已经支持 Add、Subtract、Multiply、Divide 等张量操作,同时也支持Linear、MultiHeadSelfAttention、ReLU 和 LayerNorm 等常用的深度学习层。

Tensor Operations

  • Add
  • Subtract
  • Multiply
  • Divide
  • Matrix Multiply
  • Power
  • Square Root
  • Exponentiate
  • Log
  • Sum
  • Mean
  • Variance
  • Transpose
  • At
  • MaskedFill
  • Reshape

Deep Learning Layers

  • nn.Linear
  • nn.MultiHeadSelfAttention
  • nn.FullyConnected
  • nn.Block
  • nn.Embedding
  • nn.PositionalEmbedding
  • nn.ReLU
  • nn.Softmax
  • nn.Dropout
  • nn.LayerNorm
  • nn.CrossEntropyLoss

JS-Torch 使用示例

Simple Autograd

import { torch } from "js-pytorch"; // Instantiate Tensors: let x = torch.randn([8, 4, 5]); let w = torch.randn([8, 5, 4], (requires_grad = true)); let b = torch.tensor([0.2, 0.5, 0.1, 0.0], (requires_grad = true)); // Make calculations: let out = torch.matmul(x, w); out = torch.add(out, b); // Compute gradients on whole graph: out.backward(); // Get gradients from specific Tensors: console.log(w.grad); console.log(b.grad);

Complex Autograd (Transformer)

import { torch } from "js-pytorch"; const nn = torch.nn; class Transformer extends nn.Module { constructor(vocab_size, hidden_size, n_timesteps, n_heads, p) { super(); // Instantiate Transformer's Layers: this.embed = new nn.Embedding(vocab_size, hidden_size); this.pos_embed = new nn.PositionalEmbedding(n_timesteps, hidden_size); this.b1 = new nn.Block( hidden_size, hidden_size, n_heads, n_timesteps, (dropout_p = p) ); this.b2 = new nn.Block( hidden_size, hidden_size, n_heads, n_timesteps, (dropout_p = p) ); this.ln = new nn.LayerNorm(hidden_size); this.linear = new nn.Linear(hidden_size, vocab_size); } forward(x) { let z; z = torch.add(this.embed.forward(x), this.pos_embed.forward(x)); z = this.b1.forward(z); z = this.b2.forward(z); z = this.ln.forward(z); z = this.linear.forward(z); return z; } } // Instantiate your custom nn.Module: const model = new Transformer( vocab_size, hidden_size, n_timesteps, n_heads, dropout_p ); // Define loss function and optimizer: const loss_func = new nn.CrossEntropyLoss(); const optimizer = new optim.Adam(model.parameters(), (lr = 5e-3), (reg = 0)); // Instantiate sample input and output: let x = torch.randint(0, vocab_size, [batch_size, n_timesteps, 1]); let y = torch.randint(0, vocab_size, [batch_size, n_timesteps]); let loss; // Training Loop: for (let i = 0; i < 40; i++) { // Forward pass through the Transformer: let z = model.forward(x); // Get loss: loss = loss_func.forward(z, y); // Backpropagate the loss using torch.tensor's backward() method: loss.backward(); // Update the weights: optimizer.step(); // Reset the gradients to zero after each training step: optimizer.zero_grad(); }

有了 JS-Torch 之后,在 Node.js、Deno 等 JS Runtime 上跑 AI 应用的日子越来越近了。当然,JS-Torch 要推广起来,它还需要解决一个很重要的问题,即 GPU 加速。目前已有相关的讨论,如果你感兴趣的话,可以进一步阅读相关内容:GPU Support[4] 。

参考资料

[1]JS-Torch: https://github.com/eduardoleao052/js-torch

[2]PyTorch: https://pytorch.org/

[3]Demo: https://eduardoleao052.github.io/js-torch/assets/demo/demo.html

[4]GPU Support: https://github.com/eduardoleao052/js-torch/issues/1

pytorchtransformergithub深度学习gitgpudiviandihtmlide在线体验node.js自动微分学习框架scriptrapctotpu人工智能参考资料
  • 本文作者:李琛
  • 本文链接: https://wapzz.net/post-12679.html
  • 版权声明:本博客所有文章除特别声明外,均默认采用 CC BY-NC-SA 4.0 许可协议。
本站部分内容来源于网络转载,仅供学习交流使用。如涉及版权问题,请及时联系我们,我们将第一时间处理。
文章很赞!支持一下吧 还没有人为TA充电
为TA充电
还没有人为TA充电
0
  • 支付宝打赏
    支付宝扫一扫
  • 微信打赏
    微信扫一扫
感谢支持
文章很赞!支持一下吧
关于作者
2.3W+
5
0
1
WAP站长官方

AIGC查重高怎么降?七招助你轻松应对

上一篇

AIGC之gradio系列学习教程(二)Components

下一篇
  • 复制图片
按住ctrl可打开默认菜单