C# SwinV2 Stable Diffusion 提示词反推 Onnx Demo

C# SwinV2 Stable Diffusion 提示词反推 Onnx Demo

    正在检查是否收录...

目录

介绍

效果

模型信息

项目

代码

下载 

C# SwinV2 Stable Diffusion 提示词反推 Onnx Demo

介绍

模型出处github地址:https://github.com/SmilingWolf/SW-CV-ModelZoo

模型下载地址:https://huggingface.co/SmilingWolf/wd-v1-4-swinv2-tagger-v2

效果

模型信息

Model Properties
-------------------------
---------------------------------------------------------------

Inputs
-------------------------
name:input_1:0
tensor:Float[1, 448, 448, 3]
---------------------------------------------------------------

Outputs
-------------------------
name:predictions_sigmoid
tensor:Float[1, 9083]
---------------------------------------------------------------

项目

代码

using Microsoft.ML.OnnxRuntime;
using Microsoft.ML.OnnxRuntime.Tensors;
using OpenCvSharp;
using System;
using System.Collections.Generic;
using System.Drawing;
using System.IO;
using System.Linq;
using System.Text;
using System.Windows.Forms;

namespace Onnx_Demo
{
    public partial class Form1 : Form
    {
        public Form1()
        {
            InitializeComponent();
        }

        string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";
        string image_path = "";
        DateTime dt1 = DateTime.Now;
        DateTime dt2 = DateTime.Now;
        string model_path;
        Mat image;

        SessionOptions options;
        InferenceSession onnx_session;
        Tensor<float> input_tensor;
        List<NamedOnnxValue> input_container;
        IDisposableReadOnlyCollection<DisposableNamedOnnxValue> result_infer;
        DisposableNamedOnnxValue[] results_onnxvalue;

        Tensor<float> result_tensors;

        StringBuilder sb = new StringBuilder();

        public string[] class_names;

        private void button1_Click(object sender, EventArgs e)
        {
            OpenFileDialog ofd = new OpenFileDialog();
            ofd.Filter = fileFilter;
            if (ofd.ShowDialog() != DialogResult.OK) return;
            pictureBox1.Image = null;
            image_path = ofd.FileName;
            pictureBox1.Image = new Bitmap(image_path);
            textBox1.Text = "";
            image = new Mat(image_path);
        }

        private void button2_Click(object sender, EventArgs e)
        {
            if (image_path == "")
            {
                return;
            }

            button2.Enabled = false;
            textBox1.Text = "";
            sb.Clear();
            Application.DoEvents();

            //图片缩放
            image = new Mat(image_path);
            int max_image_length = image.Cols > image.Rows ? image.Cols : image.Rows;
            Mat max_image = Mat.Zeros(new OpenCvSharp.Size(max_image_length, max_image_length), MatType.CV_8UC3);
            Rect roi = new Rect(0, 0, image.Cols, image.Rows);
            image.CopyTo(new Mat(max_image, roi));

            float[] result_array;

            // 将图片转为RGB通道
            Mat image_rgb = new Mat();
            Cv2.CvtColor(max_image, image_rgb, ColorConversionCodes.BGR2RGB);
            Mat resize_image = new Mat();
            Cv2.Resize(max_image, resize_image, new OpenCvSharp.Size(448, 448));

            // 输入Tensor
            for (int y = 0; y < resize_image.Height; y++)
            {
                for (int x = 0; x < resize_image.Width; x++)
                {
                    input_tensor[0, y, x, 0] = resize_image.At<Vec3b>(y, x)[0];
                    input_tensor[0, y, x, 1] = resize_image.At<Vec3b>(y, x)[1];
                    input_tensor[0, y, x, 2] = resize_image.At<Vec3b>(y, x)[2];
                }
            }

            //将 input_tensor 放入一个输入参数的容器,并指定名称
            input_container.Add(NamedOnnxValue.CreateFromTensor("input_1:0", input_tensor));

            dt1 = DateTime.Now;
            //运行 Inference 并获取结果
            result_infer = onnx_session.Run(input_container);
            dt2 = DateTime.Now;

            // 将输出结果转为DisposableNamedOnnxValue数组
            results_onnxvalue = result_infer.ToArray();

            // 读取第一个节点输出并转为Tensor数据
            result_tensors = results_onnxvalue[0].AsTensor<float>();

            result_array = result_tensors.ToArray();

            List<ScoreIndex> ltResult = new List<ScoreIndex>();
            ScoreIndex temp;
            for (int i = 0; i < result_array.Length; i++)
            {
                temp = new ScoreIndex(i, result_array[i]);
                ltResult.Add(temp);
            }

            //根据分数倒序排序,取前14个
            var SortedByScore = ltResult.OrderByDescending(p => p.Score).ToList().Take(14);

            foreach (var item in SortedByScore)
            {
                sb.Append(class_names[item.Index] + ",");
            }
            sb.Length--; // 将长度减1来移除最后一个字符

            sb.AppendLine("");
            sb.AppendLine("------------------");
            
            // 只取分数最高的
            // float max = result_array.Max();
            // int maxIndex = Array.IndexOf(result_array, max);
            // sb.AppendLine(class_names[maxIndex]+" "+ max.ToString("P2"));
           
            sb.AppendLine("推理耗时:" + (dt2 - dt1).TotalMilliseconds + "ms");
            textBox1.Text = sb.ToString();
            button2.Enabled = true;
        }

        private void Form1_Load(object sender, EventArgs e)
        {
            model_path = "model/model.onnx";

            // 创建输出会话,用于输出模型读取信息
            options = new SessionOptions();
            options.LogSeverityLevel = OrtLoggingLevel.ORT_LOGGING_LEVEL_INFO;
            options.AppendExecutionProvider_CPU(0);// 设置为CPU上运行

            // 创建推理模型类,读取本地模型文件
            onnx_session = new InferenceSession(model_path, options);//model_path 为onnx模型文件的路径

            // 输入Tensor
            input_tensor = new DenseTensor<float>(new[] { 1, 448, 448, 3 });
            // 创建输入容器
            input_container = new List<NamedOnnxValue>();

            image_path = "test_img/test.jpg";
            pictureBox1.Image = new Bitmap(image_path);
            image = new Mat(image_path);

            List<string> str = new List<string>();
            StreamReader sr = new StreamReader("model/lable.txt");
            string line;
            while ((line = sr.ReadLine()) != null)
            {
                str.Add(line);
            }
            class_names = str.ToArray();
        }

    }
}

using Microsoft.ML.OnnxRuntime; using Microsoft.ML.OnnxRuntime.Tensors; using OpenCvSharp; using System; using System.Collections.Generic; using System.Drawing; using System.IO; using System.Linq; using System.Text; using System.Windows.Forms; namespace Onnx_Demo { public partial class Form1 : Form { public Form1() { InitializeComponent(); } string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png"; string image_path = ""; DateTime dt1 = DateTime.Now; DateTime dt2 = DateTime.Now; string model_path; Mat image; SessionOptions options; InferenceSession onnx_session; Tensor<float> input_tensor; List<NamedOnnxValue> input_container; IDisposableReadOnlyCollection<DisposableNamedOnnxValue> result_infer; DisposableNamedOnnxValue[] results_onnxvalue; Tensor<float> result_tensors; StringBuilder sb = new StringBuilder(); public string[] class_names; private void button1_Click(object sender, EventArgs e) { OpenFileDialog ofd = new OpenFileDialog(); ofd.Filter = fileFilter; if (ofd.ShowDialog() != DialogResult.OK) return; pictureBox1.Image = null; image_path = ofd.FileName; pictureBox1.Image = new Bitmap(image_path); textBox1.Text = ""; image = new Mat(image_path); } private void button2_Click(object sender, EventArgs e) { if (image_path == "") { return; } button2.Enabled = false; textBox1.Text = ""; sb.Clear(); Application.DoEvents(); //图片缩放 image = new Mat(image_path); int max_image_length = image.Cols > image.Rows ? image.Cols : image.Rows; Mat max_image = Mat.Zeros(new OpenCvSharp.Size(max_image_length, max_image_length), MatType.CV_8UC3); Rect roi = new Rect(0, 0, image.Cols, image.Rows); image.CopyTo(new Mat(max_image, roi)); float[] result_array; // 将图片转为RGB通道 Mat image_rgb = new Mat(); Cv2.CvtColor(max_image, image_rgb, ColorConversionCodes.BGR2RGB); Mat resize_image = new Mat(); Cv2.Resize(max_image, resize_image, new OpenCvSharp.Size(448, 448)); // 输入Tensor for (int y = 0; y < resize_image.Height; y++) { for (int x = 0; x < resize_image.Width; x++) { input_tensor[0, y, x, 0] = resize_image.At<Vec3b>(y, x)[0]; input_tensor[0, y, x, 1] = resize_image.At<Vec3b>(y, x)[1]; input_tensor[0, y, x, 2] = resize_image.At<Vec3b>(y, x)[2]; } } //将 input_tensor 放入一个输入参数的容器,并指定名称 input_container.Add(NamedOnnxValue.CreateFromTensor("input_1:0", input_tensor)); dt1 = DateTime.Now; //运行 Inference 并获取结果 result_infer = onnx_session.Run(input_container); dt2 = DateTime.Now; // 将输出结果转为DisposableNamedOnnxValue数组 results_onnxvalue = result_infer.ToArray(); // 读取第一个节点输出并转为Tensor数据 result_tensors = results_onnxvalue[0].AsTensor<float>(); result_array = result_tensors.ToArray(); List<ScoreIndex> ltResult = new List<ScoreIndex>(); ScoreIndex temp; for (int i = 0; i < result_array.Length; i++) { temp = new ScoreIndex(i, result_array[i]); ltResult.Add(temp); } //根据分数倒序排序,取前14个 var SortedByScore = ltResult.OrderByDescending(p => p.Score).ToList().Take(14); foreach (var item in SortedByScore) { sb.Append(class_names[item.Index] + ","); } sb.Length--; // 将长度减1来移除最后一个字符 sb.AppendLine(""); sb.AppendLine("------------------"); // 只取分数最高的 // float max = result_array.Max(); // int maxIndex = Array.IndexOf(result_array, max); // sb.AppendLine(class_names[maxIndex]+" "+ max.ToString("P2")); sb.AppendLine("推理耗时:" + (dt2 - dt1).TotalMilliseconds + "ms"); textBox1.Text = sb.ToString(); button2.Enabled = true; } private void Form1_Load(object sender, EventArgs e) { model_path = "model/model.onnx"; // 创建输出会话,用于输出模型读取信息 options = new SessionOptions(); options.LogSeverityLevel = OrtLoggingLevel.ORT_LOGGING_LEVEL_INFO; options.AppendExecutionProvider_CPU(0);// 设置为CPU上运行 // 创建推理模型类,读取本地模型文件 onnx_session = new InferenceSession(model_path, options);//model_path 为onnx模型文件的路径 // 输入Tensor input_tensor = new DenseTensor<float>(new[] { 1, 448, 448, 3 }); // 创建输入容器 input_container = new List<NamedOnnxValue>(); image_path = "test_img/test.jpg"; pictureBox1.Image = new Bitmap(image_path); image = new Mat(image_path); List<string> str = new List<string>(); StreamReader sr = new StreamReader("model/lable.txt"); string line; while ((line = sr.ReadLine()) != null) { str.Add(line); } class_names = str.ToArray(); } } } 

下载 

源码下载

onnxstemappivamicrosoftcpucliroipngcreatecodeconversionexoidewindowsgitgithubstable diffusiondiffusiontpu
  • 本文作者:李琛
  • 本文链接: https://wapzz.net/post-9730.html
  • 版权声明:本博客所有文章除特别声明外,均默认采用 CC BY-NC-SA 4.0 许可协议。
本站部分内容来源于网络转载,仅供学习交流使用。如涉及版权问题,请及时联系我们,我们将第一时间处理。
文章很赞!支持一下吧 还没有人为TA充电
为TA充电
还没有人为TA充电
0
  • 支付宝打赏
    支付宝扫一扫
  • 微信打赏
    微信扫一扫
感谢支持
文章很赞!支持一下吧
关于作者
2.3W+
5
0
1
WAP站长官方

创建内部大型语言模型(LLM)前必须思考的五个关键问题

上一篇

浅析“novel-plus采集插件”在信息聚合时代的应用与影响

下一篇
  • 复制图片
按住ctrl可打开默认菜单