PyTorch 该怎么学?太简单了

PyTorch 该怎么学?太简单了

    正在检查是否收录...
一言准备中...

挺多小伙伴问过PyTorch该怎么学,经过长期实践来看,初学者需要熟知的概念和用法真的不多,以下总结的简明指南一起看看吧!

构建Tensor

PyTorch 中的 Tensors 是多维数组,类似于 NumPy 的 ndarrays,但可以在 GPU 上运行:

import torch # Create a 2x3 tensor tensor = torch.tensor([[1, 2, 3], [4, 5, 6]]) print(tensor)

动态计算图

PyTorch 使用动态计算图,在执行操作时即时构建计算图,这为在运行时修改图形提供了灵活性:

# Define two tensors a = torch.tensor([2.], requires_grad=True) b = torch.tensor([3.], requires_grad=True) # Compute result c = a * b c.backward() # Gradients print(a.grad) # Gradient w.r.t a

GPU加速

PyTorch 允许在 CPU 和 GPU 之间轻松切换。使用 .to(device) 即可:

device = "cuda" if torch.cuda.is_available() else "cpu" tensor = tensor.to(device)

Autograd:自动微分

PyTorch 的 autograd 为tensor的所有运算提供了自动微分功能,设置 requires_grad=True可以跟踪计算:

x = torch.tensor([2.], requires_grad=True) y = x**2 y.backward() print(x.grad) # Gradient of y w.r.t x

模块化神经网络

PyTorch 提供了 nn.Module 类来定义神经网络架构,通过子类化创建自定义层:

import torch.nn as nn class SimpleNN(nn.Module): def __init__(self): super().__init__() self.fc = nn.Linear(1, 1) def forward(self, x): return self.fc(x)

预定义层和损失函数

PyTorch 在 nn 模块中提供了各种预定义层、损失函数和优化算法:

loss_fn = nn.CrossEntropyLoss() optimizer = torch.optim.Adam(model.parameters(), lr=0.001)

Dataset 与 DataLoader

为实现高效的数据处理和批处理,PyTorch 提供了 Dataset 和 DataLoader 类:

from torch.utils.data import Dataset, DataLoader class CustomDataset(Dataset): # ... (methods to define) data_loader = DataLoader(dataset, batch_size=32, shuffle=True)

模型训练(循环)

通常PyTorch 的训练遵循以下模式:前向传播、计算损失、反向传递和参数更新:

for epoch in range(epochs): for data, target in data_loader: optimizer.zero_grad() output = model(data) loss = loss_fn(output, target) loss.backward() optimizer.step()

模型序列化

使用 torch.save() 和 torch.load() 保存并加载模型:

# Save torch.save(model.state_dict(), 'model_weights.pth') # Load model.load_state_dict(torch.load('model_weights.pth'))

JIT

PyTorch 默认以eager模式运行,但也为模型提供即时(JIT)编译:

scripted_model = torch.jit.script(model) scripted_model.save("model_jit.pt")

pytorchgpuscript神经网络defitpu自动微分cpu数据处理模型训练自定义gpu加速批处理模块化numpycreate
  • 本文作者:WAP站长网
  • 本文链接: https://wapzz.net/post-9660.html
  • 版权声明:本博客所有文章除特别声明外,均默认采用 CC BY-NC-SA 4.0 许可协议。
本站部分内容来源于网络转载,仅供学习交流使用。如涉及版权问题,请及时联系我们,我们将第一时间处理。
文章很赞!支持一下吧 还没有人为TA充电
为TA充电
还没有人为TA充电
0
  • 支付宝打赏
    支付宝扫一扫
  • 微信打赏
    微信扫一扫
感谢支持
文章很赞!支持一下吧
关于作者
2.7W+
9
1
2
WAP站长官方

Midjourney封禁Stability AI 禁止后者员工使用软件

上一篇

【AIGC】AI作图最全提示词prompt集合(收藏级)

下一篇
  • 复制图片
按住ctrl可打开默认菜单