Llama-2 推理和微调的硬件要求总结:RTX 3080 就可以微调最小模型

Llama-2 推理和微调的硬件要求总结:RTX 3080 就可以微调最小模型

    正在检查是否收录...

大语言模型微调是指对已经预训练的大型语言模型(例如Llama-2,Falcon等)进行额外的训练,以使其适应特定任务或领域的需求。微调通常需要大量的计算资源,但是通过量化和Lora等方法,我们也可以在消费级的GPU上来微调测试,但是消费级GPU也无法承载比较大的模型,经过我的测试,7B的模型可以在3080(8G)上跑起来,这对于我们进行简单的研究是非常有帮助的,但是如果需要更深入的研究,还是需要专业的硬件。

我们先看看硬件配置:

亚马逊的g3.xlarge M60是8GB的VRAM和2048个CUDA内核。3080是10Gb的GDDR6 VRAM,这两个GPU基本类似。

这里做的测试是使用一个小的(65MB文本)自定义数据集上微调lama-2 - 7b (~7GB)。

可以看到3080非常耗电,训练时最大耗电364瓦(PC总耗电超过500瓦)。

看看训练的记录

说明训练是ok的,能够完整的进行训练

为了验证内存消耗,我又在8G 的M60上跑了一遍,也是没问题的,这应该是GPU内存的极限了。

占用的差不多7.1G的内存,再多一些可能就不行了,不过还好,将就够用。

最后我们再整理个列表,大概看看各个模型都需要什么样的内存,以下只是推理,不包括微调,如果使用微调,大概需要再加20%(LORA)。

LLaMA-7B

建议使用至少6GB VRAM的GPU。适合此模型的GPU示例是RTX 3060,它提供8GB VRAM版本。

LLaMA-13B

建议使用至少10GB VRAM的GPU。满足此要求的gpu包括AMD 6900 XT、RTX 2060 12GB、3060 12GB、3080和A2000。这些gpu提供了必要的VRAM容量来有效地处理LLaMA-13B的计算需求。

LLaMA-30B

建议使用VRAM不低于20GB的GPU。RTX 3080 20GB、A4500、A5000、3090、4090、6000或Tesla V100都是提供所需VRAM容量的gpu示例。这些gpu为LLaMA-30B提供了高效的处理和内存管理。

LLaMA-65B

LLaMA-65B在与至少具有40GB VRAM的GPU。适合此型号的gpu示例包括A100 40GB, 2x3090, 2x4090, A40, RTX A6000或8000。

对于速度来说:

我是用RTX 4090和Intel i9-12900K CPU的推理速度示例

对于CPU来说,LLaMA也是可以用的,但是速度会很慢,而且最好不要进行训练,只能进行推理,下面是,13B模型在不同CPU上推理速度列表

各个系统的配置和性能可能会有所不同。最好对不同的设置进行实验和基准测试,以找到最适合您特定需求的解决方案,上面的测试仅供参考。

https://avoid.overfit.cn/post/0dd29b9a89514a988ae54694dccc9fa6

gpullamacpu语言模型intelrfi内存管理xla计算资源大语言模型预训练模型微调自定义解决方案亚马逊数据集大型语言模型url
  • 本文作者:李琛
  • 本文链接: https://wapzz.net/post-6833.html
  • 版权声明:本博客所有文章除特别声明外,均默认采用 CC BY-NC-SA 4.0 许可协议。
本站部分内容来源于网络转载,仅供学习交流使用。如涉及版权问题,请及时联系我们,我们将第一时间处理。
文章很赞!支持一下吧 还没有人为TA充电
为TA充电
还没有人为TA充电
0
  • 支付宝打赏
    支付宝扫一扫
  • 微信打赏
    微信扫一扫
感谢支持
文章很赞!支持一下吧
关于作者
2.3W+
5
0
1
WAP站长官方

OpenAI联创Karpathy发文:用自动驾驶诠释AGI!原贴已删速收藏

上一篇

谷歌再雪前耻,新Bard逆袭GPT-4冲上LLM排行榜第二!Jeff Dean高呼我们回来了

下一篇
  • 复制图片
按住ctrl可打开默认菜单