可令 AI 模型计算复杂离散数学问题,谷歌 DeepMind 公布“FunSearch”训练法

可令 AI 模型计算复杂离散数学问题,谷歌 DeepMind 公布“FunSearch”训练法

    正在检查是否收录...

12 月 15 日消息,谷歌 DeepMind 日前公布了一种名为“FunSearch”的模型训练法,号称能够计算包含“上限级问题”、“装箱问题”在内的一系列“涉及数学、计算机科学领域的复杂问题”。

▲ 图源 谷歌 DeepMind(下同)

据悉,FunSearch 模型训练法主要为 AI 模型引入了一个“评估器(Evaluator)”系统,AI 模型输出一系列“创意解题方法”,“评估器”则负责评判模型输出的解题办法,反复迭代后,就能训练出数学能力更强的 AI 模型。

谷歌 DeepMind 使用 PaLM 2 模型进行测试,研究人员建立了专用“代码池”,使用代码形式为模型输入一系列问题,并设置了评估器流程,之后模型便会在每一次迭代中,自动从代码池中挑选问题,生成“具有创造性的新解法”,并交由评估器进行评估,其中“最佳解法”将会被重新加入到代码池中,重新开始另一次迭代。

IT之家注意到,FunSearch 训练法对“离散数学(Combinatorics)”特别擅长,经训练法锻炼后的模型,可以轻松解决极值组合数学问题,研究人员在新闻稿中便介绍了模型计算“上限级问题(数学中涉及计数和排列领域的一个中心问题)”的过程方法。

此外,研究人员也成功使用 FunSearch 训练法解决了“装箱问题(Bin Packing Problem)”,这是一个“将不同大小物品放进最少数量容器”的问题,FunSearch 为“装箱问题”提供了一种“即时性”的解决方案,生成一项“根据物品现有体积自动进行调整”的程序。

研究人员提到,与其他利用神经网络进行学习的 AI 训练法相比,经过 FunSearch 训练法锻炼后的模型,输出的代码更易于检查与部署,也就代表更容易被整合到实际工业环境中

研究人员模型训练llm神经网络解决方案新闻稿ai 训练palmurl创造性
  • 本文作者:李琛
  • 本文链接: https://wapzz.net/post-3572.html
  • 版权声明:本博客所有文章除特别声明外,均默认采用 CC BY-NC-SA 4.0 许可协议。
本站部分内容来源于网络转载,仅供学习交流使用。如涉及版权问题,请及时联系我们,我们将第一时间处理。
文章很赞!支持一下吧 还没有人为TA充电
为TA充电
还没有人为TA充电
0
  • 支付宝打赏
    支付宝扫一扫
  • 微信打赏
    微信扫一扫
感谢支持
文章很赞!支持一下吧
关于作者
2.3W+
5
0
1
WAP站长官方

如何把Ai绘画工具放到我们的App中

上一篇

35个国内AI绘画工具【免费+付费】

下一篇
  • 复制图片
按住ctrl可打开默认菜单