OpenAI Whisper and ChatGPT ASR Gradio Web UI
一 环境准备 1.1 python 1.2 windows 二 导入所需要的包 三 加载模型 四 定义openai和whisper接口 五 生成Gradio Web UI麦克风输入,展示三种结果 输入ASR结果 输出文本 输出TTS结果
一 环境准备
1.1 python
gradio==3.19.1
gTTS==2.3.1
openai==0.27.0
openai-whisper==20230124
1.2 windows
使用以下命令安装 ffmpeg
choco install ffmpeg
需要科学上网,否则连接超时
二 导入所需要的包
import whisper import gradio as gr import time import warnings import json import openai import os from gtts import gTTS
三 加载模型
openai.api_key='输入你自己的openai-key' model = whisper.load_model("base")
四 定义openai和whisper接口
def chatgpt_api(input_text): messages = [ {"role": "system", "content": "you are great!"}] if input_text: messages.append( {"role": "user", "content": input_text}, ) chat_completion = openai.ChatCompletion.create( model="gpt-3.5-turbo", messages=messages ) reply = chat_completion.choices[0].message.content return reply def transcribe(audio): language = "zh-CN" audio = whisper.load_audio(audio) audio = whisper.pad_or_trim(audio) mel = whisper.log_mel_spectrogram(audio).to(model.device) _, probs = model.detect_language(mel) options = whisper.DecodingOptions(fp16 = False) result = whisper.decode(model, mel, options) result_text = result.text out_result = chatgpt_api(result_text) audioobj = gTTS(text = out_result, lang = language, slow = False) audioobj.save("Aria.mp3") return [result_text, out_result, "Aria.mp3"]
五 生成Gradio Web UI
output_1 = gr.Textbox(label="Speech to Text") output_2 = gr.Textbox(label="ChatGPT Output") output_3 = gr.Audio("Aria.mp3") gr.Interface( title = 'OpenAI Whisper and ChatGPT ASR Gradio Web UI', fn=transcribe, inputs=[ gr.inputs.Audio(source="microphone", type="filepath") ], outputs=[ output_1, output_2, output_3 ], live=True).launch()
参考:https://github.com/bhattbhavesh91/voice-assistant-whisper-chatgpt
whispercodeopenaichattpugptchatgptgradiottswebapiasrmp3windowspythongitgpt-3urlgpt-3.5createcodingjsongithubappassistantstemctr