背景
llama-index在实现RAG方案的时候多是用的llama等英文大模型,对于国内的诸多模型案例较少,本次将使用qwen大模型实现llama-index的RAG方案。
环境配置
(1)pip包
llamaindex需要预装很多包,这里先把我成功的案例里面的pip包配置发出来,在requirements.txt里面。
absl-py==1.4.0 accelerate==0.27.2 aiohttp==3.9.3 aiosignal==1.3.1 aliyun-python-sdk-core==2.13.36 aliyun-python-sdk-kms==2.16.1 annotated-types==0.6.0 anyio==3.7.1 apphub @ file:///environment/apps/apphub/dist/apphub-1.0.0.tar.gz#sha256=260f99c0de4c575b19ab913aa134877e9efd81b820b97511fc8379674643c253 argon2-cffi==21.3.0 argon2-cffi-bindings==21.2.0 asgiref==3.7.2 asttokens==2.2.1 astunparse==1.6.3 async-timeout==4.0.3 attrs==23.1.0 Babel==2.12.1 backcall==0.2.0 backoff==2.2.1 bcrypt==4.1.2 beautifulsoup4==4.12.3 bleach==6.0.0 boltons @ file:///croot/boltons_1677628692245/work brotlipy==0.7.0 bs4==0.0.2 build==1.1.1 cachetools==5.3.1 certifi @ file:///croot/certifi_1690232220950/work/certifi cffi @ file:///croot/cffi_1670423208954/work chardet==3.0.4 charset-normalizer @ file:///tmp/build/80754af9/charset-normalizer_1630003229654/work chroma-hnswlib==0.7.3 chromadb==0.4.24 click==7.1.2 cmake==3.25.0 coloredlogs==15.0.1 comm==0.1.4 conda @ file:///croot/conda_1690494963117/work conda-content-trust @ file:///tmp/abs_5952f1c8-355c-4855-ad2e-538535021ba5h26t22e5/croots/recipe/conda-content-trust_1658126371814/work conda-libmamba-solver @ file:///croot/conda-libmamba-solver_1685032319139/work/src conda-package-handling @ file:///croot/conda-package-handling_1685024767917/work conda_package_streaming @ file:///croot/conda-package-streaming_1685019673878/work contourpy==1.2.0 crcmod==1.7 cryptography @ file:///croot/cryptography_1686613057838/work cycler==0.12.1 dataclasses-json==0.6.4 debugpy==1.6.7 decorator==5.1.1 defusedxml==0.7.1 Deprecated==1.2.14 dirtyjson==1.0.8 distro==1.9.0 ecdsa==0.18.0 exceptiongroup==1.1.2 executing==1.2.0 fastapi==0.104.1 fastjsonschema==2.18.0 featurize==0.0.24 filelock==3.9.0 flatbuffers==23.5.26 fonttools==4.44.0 frozenlist==1.4.1 fsspec==2024.2.0 gast==0.4.0 google-auth==2.22.0 google-auth-oauthlib==1.0.0 google-pasta==0.2.0 googleapis-common-protos==1.62.0 greenlet==3.0.3 grpcio==1.62.0 gunicorn==21.2.0 h11==0.14.0 h5py==3.9.0 httpcore==0.17.3 httptools==0.6.1 httpx==0.24.1 huggingface-hub==0.20.3 humanfriendly==10.0 idna==2.10 imageio==2.32.0 importlib-metadata==6.11.0 importlib_resources==6.1.3 ipykernel==6.25.0 ipython==8.14.0 ipython-genutils==0.2.0 ipywidgets==8.1.2 jedi==0.19.0 Jinja2==3.1.2 jmespath==0.10.0 joblib==1.3.2 json5==0.9.14 jsonpatch @ file:///tmp/build/80754af9/jsonpatch_1615747632069/work jsonpointer==2.1 jsonschema==4.18.6 jsonschema-specifications==2023.7.1 jupyter-server==1.24.0 jupyter_client==8.3.0 jupyter_core==5.3.1 jupyterlab==3.2.9 jupyterlab-pygments==0.2.2 jupyterlab_server==2.24.0 jupyterlab_widgets==3.0.10 keras==2.13.1 kiwisolver==1.4.5 kubernetes==29.0.0 lazy_loader==0.3 libclang==16.0.6 libmambapy @ file:///croot/mamba-split_1685993156657/work/libmambapy lit==15.0.7 llama-index==0.10.17 llama-index-agent-openai==0.1.5 llama-index-cli==0.1.8 llama-index-core==0.10.17 llama-index-embeddings-huggingface==0.1.4 llama-index-embeddings-openai==0.1.6 llama-index-indices-managed-llama-cloud==0.1.3 llama-index-legacy==0.9.48 llama-index-llms-huggingface==0.1.3 llama-index-llms-openai==0.1.7 llama-index-multi-modal-llms-openai==0.1.4 llama-index-program-openai==0.1.4 llama-index-question-gen-openai==0.1.3 llama-index-readers-file==0.1.8 llama-index-readers-llama-parse==0.1.3 llama-index-vector-stores-chroma==0.1.5 llama-parse==0.3.8 llamaindex-py-client==0.1.13 Markdown==3.4.4 MarkupSafe==2.1.2 marshmallow==3.21.1 matplotlib==3.8.1 matplotlib-inline==0.1.6 mistune==3.0.1 mmh3==4.1.0 monotonic==1.6 mpmath==1.2.1 multidict==6.0.4 mypy-extensions==1.0.0 nbclassic==0.2.8 nbclient==0.8.0 nbconvert==7.7.3 nbformat==5.9.2 nest-asyncio==1.6.0 networkx==3.0 nltk==3.8.1 notebook==6.4.12 numpy==1.24.1 nvidia-cublas-cu12==12.1.3.1 nvidia-cuda-cupti-cu12==12.1.105 nvidia-cuda-nvrtc-cu12==12.1.105 nvidia-cuda-runtime-cu12==12.1.105 nvidia-cudnn-cu12==8.9.2.26 nvidia-cufft-cu12==11.0.2.54 nvidia-curand-cu12==10.3.2.106 nvidia-cusolver-cu12==11.4.5.107 nvidia-cusparse-cu12==12.1.0.106 nvidia-nccl-cu12==2.19.3 nvidia-nvjitlink-cu12==12.4.99 nvidia-nvtx-cu12==12.1.105 oauthlib==3.2.2 onnxruntime==1.17.1 openai==1.13.3 opencv-python==4.8.1.78 opentelemetry-api==1.23.0 opentelemetry-exporter-otlp-proto-common==1.23.0 opentelemetry-exporter-otlp-proto-grpc==1.23.0 opentelemetry-instrumentation==0.44b0 opentelemetry-instrumentation-asgi==0.44b0 opentelemetry-instrumentation-fastapi==0.44b0 opentelemetry-proto==1.23.0 opentelemetry-sdk==1.23.0 opentelemetry-semantic-conventions==0.44b0 opentelemetry-util-http==0.44b0 opt-einsum==3.3.0 orjson==3.9.15 oss2==2.18.1 overrides==7.7.0 packaging @ file:///croot/packaging_1678965309396/work pandas==2.1.2 pandocfilters==1.5.0 parso==0.8.3 pexpect==4.8.0 pickleshare==0.7.5 Pillow==9.3.0 platformdirs==3.10.0 pluggy @ file:///tmp/build/80754af9/pluggy_1648024709248/work posthog==3.5.0 prometheus-client==0.17.1 prompt-toolkit==3.0.39 protobuf==4.23.4 psutil==5.9.5 ptyprocess==0.7.0 pulsar-client==3.4.0 pure-eval==0.2.2 pyasn1==0.5.0 pyasn1-modules==0.3.0 pycosat @ file:///croot/pycosat_1666805502580/work pycparser @ file:///tmp/build/80754af9/pycparser_1636541352034/work pycryptodome==3.18.0 pydantic==2.4.2 pydantic_core==2.10.1 Pygments==2.15.1 PyMuPDF==1.23.26 PyMuPDFb==1.23.22 pyOpenSSL @ file:///croot/pyopenssl_1677607685877/work pyparsing==3.1.1 pypdf==4.1.0 PyPika==0.48.9 pyproject_hooks==1.0.0 PySocks @ file:///home/builder/ci_310/pysocks_1640793678128/work python-dateutil==2.8.2 python-dotenv==1.0.0 pytz==2023.3.post1 PyYAML==6.0.1 pyzmq==25.1.0 referencing==0.30.0 regex==2023.12.25 requests==2.31.0 requests-oauthlib==1.3.1 rpds-py==0.9.2 rsa==4.9 ruamel.yaml @ file:///croot/ruamel.yaml_1666304550667/work ruamel.yaml.clib @ file:///croot/ruamel.yaml.clib_1666302247304/work safetensors==0.4.2 scikit-image==0.22.0 scikit-learn==1.3.2 scipy==1.11.3 seaborn==0.13.0 Send2Trash==1.8.2 six @ file:///tmp/build/80754af9/six_1644875935023/work sniffio==1.3.0 socksio==1.0.0 soupsieve==2.4.1 SQLAlchemy==2.0.28 sshpubkeys==3.3.1 stack-data==0.6.2 starlette==0.27.0 sympy==1.11.1 tabulate==0.8.7 tenacity==8.2.3 tensorboard==2.13.0 tensorboard-data-server==0.7.1 tensorflow==2.13.0 tensorflow-estimator==2.13.0 tensorflow-io-gcs-filesystem==0.33.0 termcolor==2.3.0 terminado==0.17.1 threadpoolctl==3.2.0 tifffile==2023.9.26 tiktoken==0.6.0 tinycss2==1.2.1 tokenizers==0.15.2 tomli==2.0.1 toolz @ file:///croot/toolz_1667464077321/work torch==2.2.1 torchaudio==2.0.2+cu118 torchvision==0.15.2+cu118 tornado==6.3.2 tqdm==4.66.2 traitlets==5.9.0 transformers==4.38.2 triton==2.2.0 typer==0.9.0 typing-inspect==0.9.0 typing_extensions==4.8.0 tzdata==2023.3 urllib3==1.25.11 uvicorn==0.23.2 uvloop==0.19.0 watchfiles==0.21.0 wcwidth==0.2.5 webencodings==0.5.1 websocket-client==1.2.1 websockets==12.0 Werkzeug==2.3.6 widgetsnbextension==4.0.10 workspace @ file:///home/featurize/work/workspace/dist/workspace-0.1.0.tar.gz#sha256=b292beb3599f79d3791771eff9dc422cc37c58c1fc8daadeafbf025a2e7ea986 wrapt==1.15.0 yarl==1.9.2 zipp==3.17.0 zstandard @ file:///croot/zstandard_1677013143055/work
(2)python 环境
(3)安装命令
!pip install llama-index !pip install llama-index-llms-huggingface !pip install llama-index-embeddings-huggingface !pip install llama-index ipywidgets !pip install torch !git clone https://www.modelscope.cn/AI-ModelScope/bge-small-zh-v1.5.git !git clone https://www.modelscope.cn/qwen/Qwen1.5-4B-Chat.git
(4)目录结构
代码
(1)加载模型
import torch from llama_index.llms.huggingface import HuggingFaceLLM from llama_index.core import PromptTemplate import os os.environ['KMP_DUPLICATE_LIB_OK']='True' # Model names (make sure you have access on HF) LLAMA2_7B = "/home/featurize/Qwen1.5-4B-Chat" # LLAMA2_7B_CHAT = "meta-llama/Llama-2-7b-chat-hf" # LLAMA2_13B = "meta-llama/Llama-2-13b-hf" LLAMA2_13B_CHAT = "/home/featurize/Qwen1.5-4B-Chat" # LLAMA2_70B = "meta-llama/Llama-2-70b-hf" # LLAMA2_70B_CHAT = "meta-llama/Llama-2-70b-chat-hf" selected_model = LLAMA2_13B_CHAT SYSTEM_PROMPT = """You are an AI assistant that answers questions in a friendly manner, based on the given source documents. Here are some rules you always follow: - Generate human readable output, avoid creating output with gibberish text. - Generate only the requested output, don't include any other language before or after the requested output. - Never say thank you, that you are happy to help, that you are an AI agent, etc. Just answer directly. - Generate professional language typically used in business documents in North America. - Never generate offensive or foul language. """ query_wrapper_prompt = PromptTemplate( "[INST]<<SYS>>\n" + SYSTEM_PROMPT + "<</SYS>>\n\n{query_str}[/INST] " ) llm = HuggingFaceLLM(context_window=4096, max_new_tokens=2048, generate_kwargs={"temperature": 0.0, "do_sample": False}, query_wrapper_prompt=query_wrapper_prompt, tokenizer_name=selected_model, model_name=selected_model, device_map="auto" )
(2)加载词嵌入向量
from llama_index.embeddings.huggingface import HuggingFaceEmbedding embed_model = HuggingFaceEmbedding(model_name="/home/featurize/bge-small-zh-v1.5")
from llama_index.core import Settings Settings.llm = llm Settings.embed_model = embed_model
from llama_index.core import SimpleDirectoryReader # load documents documents = SimpleDirectoryReader("./data/").load_data()
from llama_index.core import VectorStoreIndex index = VectorStoreIndex.from_documents(documents)
index
# set Logging to DEBUG for more detailed outputs query_engine = index.as_query_engine()
response = query_engine.query("小额贷款咋规定的?") print(response)
知识库
llamaindex实现RAG中很关键的一环就是知识库,知识库主要是各种类型的文档,这里给的文档是一个pdf文件,文件内容如下。
总结
从上面的代码可以看出,我们使用qwen和bge-zh模型可以实现本地下载模型的RAG方案,知识库里面的内容也可以实现中文问答,这非常有利于我们进行私有化部署方案,从而扩展我们的功能。
llamahuggingfacellmclijsonchatpythonapppromptopenaijupyterllama2docrapparselmsmballmssoccto