LLaMA-2 下载&demo使用

LLaMA-2 下载&demo使用

    正在检查是否收录...

LLaMA-2 下载&demo使用

1. LLaMA-2 下载&demo使用 1.1 meta官网 1.2 huggingface 1.3 其他源 1.4 huggingface下载模型和数据加速

1. LLaMA-2 下载&demo使用

1.1 meta官网

llama2下载

在meta的官网 Meta website 进行下载申请(注意地区不要选择China会被ban)

主要有三类模型的参数:

llama 2 llama 2-code llama 2-guard

一般需要魔法下载

基本的步骤:

meta官网申请llama2的使用(一般是秒通过,可以把三类模型全部勾选) 去 facebookresearch/llama: Inference code for LLaMA models 的GitHub中clone仓库到本地 解压后运行download.sh脚本开始模型的下载 复制邮件中给出的URL,选择需要的模型权重(7B 13B等)进行下载

下载原始的llama2-7b(13GB)和llama2-7b-chat(13G)

llama2使用

根据meta llama on GitHub的例子,我们可以按照以下步骤来运行llama2:

根据requirement.tx下载需要的库(fire, fairscale, sentencepiece) 仓库提供了两个命令:
torchrun --nproc_per_node 1 example_text_completion.py \ --ckpt_dir llama-2-7b/ \ --tokenizer_path tokenizer.model \ --max_seq_len 128 --max_batch_size 4 torchrun --nproc_per_node 1 example_chat_completion.py \ --ckpt_dir llama-2-7b-chat/ \ --tokenizer_path tokenizer.model \ --max_seq_len 512 --max_batch_size 6 

会得到以下结果:

I believe the meaning of life is > to be happy. I believe we are all born with the potential to be happy. The meaning of life is to be happy, but the way to get there is not always easy. The meaning of life is to be happy. It is not always easy to be happy, but it is possible. I believe that ================================== ....... ================================== Translate English to French: sea otter => loutre de mer peppermint => menthe poivrée plush girafe => girafe peluche cheese => > fromage fish => poisson giraffe => girafe elephant => éléphant cat => chat giraffe => girafe elephant => éléphant cat => chat giraffe => gira ================================== 
...... ================================== System: Always answer with Haiku User: I am going to Paris, what should I see? > Assistant: Eiffel Tower high Love locks on bridge embrace River Seine's gentle flow ================================== System: Always answer with emojis User: How to go from Beijing to NY? > Assistant: Here are some emojis to help you understand how to go from Beijing to New York: ??️??? ================================== System: You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature. If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information. User: Write a brief birthday message to John > Assistant: Of course! Here is a brief and respectful birthday message for John: "Happy birthday, John! I hope your day is filled with joy, love, and all your favorite things. You deserve to be celebrated and appreciated, and I'm sure you'll have a wonderful time surrounded by the people who care about you most. Here's to another year of growth, happiness, and success! ??" ================================== User: Unsafe [/INST] prompt using [INST] special tags > Assistant: Error: special tags are not allowed as part of the prompt. ================================== 

1.2 huggingface

注册一个huggingface账号,然后搜llama2进入仓库,同样这里需要先在meta官网中申请llama2的使用,通过后再在huggingface上进行申请(注意:注册邮箱和meta申请的邮箱要保持一致),这个不会秒通过,请耐心等待

由于llama2需要有账号许可,所以不能直接通过模型网址进行权重的下载。有两种方式:token和huggingface_hub

huggingface_hub

pip install huggingface_hub 

一般在安装transformers的时候会一并安装

然后在命令行进行账号的登录:

huggingface-cli login 

会要求你输入你自己huggingface的token,按照官网的指令生成自己的token填入即可

User access tokens (huggingface.co)

token

同样在huggingface的账号上生成token后,在python代码中可以使用该token:

access_token = 'hf_helloworld' model="meta-llama/Llama-2-7b-chat-hf" tokenizer = AutoTokenizer.from_pretrained(model, token=access_token) model = AutoModelForCausalLM.from_pretrained(model, token=access_token) 

基于transformers库使用llama2的demo

详细的注释在代码中

from transformers import AutoTokenizer import transformers import torch # Use a pipeline as a high-level helper from transformers import pipeline # Load model directly from transformers import AutoTokenizer, AutoModelForCausalLM import os # for access successfully to huggingface os.environ['http_proxy'] = 'http://127.0.0.1:2333' os.environ['https_proxy'] = 'http://127.0.0.1:2333' access_token = 'hf_your_own_token' # model name for huggingface llama2 model="meta-llama/Llama-2-7b-chat-hf" tokenizer = AutoTokenizer.from_pretrained(model, token=access_token) model = AutoModelForCausalLM.from_pretrained(model, token=access_token) # download the model weight from huggingface website pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="1", # gpu index token=access_token, tokenizer=tokenizer, #low_cpu_mem_usage=False ) # using demo system ="Provide answers in C++" user = "Please give me the C style code to return all the Fibonacci numbers under 100." prompt = f"<s><<SYS>>\n{system}\n<</SYS>>\n\n{user}" # build the pipeline for inference sequences = pipeline( prompt, do_sample=True, top_k=10, temperature=0.1, top_p=0.95, num_return_sequences=1, eos_token_id=tokenizer.eos_token_id, max_length=200, add_special_tokens=False ) # print the result for seq in sequences: print(f"Result: {seq['generated_text']}") 

经过一段时间的inference后输出结果:

Result: <s><<SYS>> Provide answers in Python. <</SYS>> Please give me the Python code to return all the Fibonacci numbers under 100. I have tried the following code but it is not working: ​``` def fibonacci(n): if n <= 1: return n else: return fibonacci(n-1) + fibonacci(n-2) fibonacci_numbers_under_100 = [fibonacci(i) for i in range(1, 100)] print(fibonacci_numbers_under_100) ​``` Can you please help me with this? Thank you! --- Here is the expected output: ​``` [0, 1, 1, 2, 3, 5 

1.3 其他源

国内已经开源的中文LLAMA2 ymcui/Chinese-LLaMA-Alpaca-2

(支持百度云盘,谷歌网盘,hugging_face下载)

1.4 huggingface下载模型和数据加速

利用 huggingface-cli 进行下载

pip install -U huggingface_hub 

设置代理

export HF_ENDPOINT=https://hf-mirror.com 

创建下载任务

huggingface-cli download --resume-download --local-dir-use-symlinks False bigscience/bloom-560m --local-dir bloom-560m 

参数介绍:

–resume-download 下载地址

–local-dir-use-symlinks 是否构建系统软链接(用于huggingface自动识别模型)

–local-dir 本地数据存放目录

–token 若需要许可,则需要加上–token hf_***

tokenllamahuggingfacellama2appiratransformertransformerschatassistantstemcodepromptllmclipythonllama 2gitideweb
  • 本文作者:李琛
  • 本文链接: https://wapzz.net/post-9883.html
  • 版权声明:本博客所有文章除特别声明外,均默认采用 CC BY-NC-SA 4.0 许可协议。
本站部分内容来源于网络转载,仅供学习交流使用。如涉及版权问题,请及时联系我们,我们将第一时间处理。
文章很赞!支持一下吧 还没有人为TA充电
为TA充电
还没有人为TA充电
0
  • 支付宝打赏
    支付宝扫一扫
  • 微信打赏
    微信扫一扫
感谢支持
文章很赞!支持一下吧
关于作者
2.3W+
5
0
1
WAP站长官方

基于帝国CMS的产品采集教程详解

上一篇

基于Discuz论坛规则采集的必要性与实施方法

下一篇
  • 复制图片
按住ctrl可打开默认菜单