萤火跑模型 | 高性能 Stable Diffusion 助力高质量 AI 绘图

萤火跑模型 | 高性能 Stable Diffusion 助力高质量 AI 绘图

    正在检查是否收录...

Stable Diffusion

AI 绘画最近成功破圈,成了炙手可热的热门话题。DALLE,GLIDE,Stable Diffusion 等基于扩散机制的生成模型让 AI 作图发生质变,让人们看到了“AI 转成生产力”的曙光。

在这些扩散模型中,Stable Diffusion 以其优秀的效果和开源的权重成为了其中的代表,受到广泛的关注和体验。其基于 Laion5B 超大规模“文本 - 图像”对数据集,Stable AI 宣称用了 5000 张 A100 耗时几个月训练而成。幻方 AI 近期在萤火二号上使用 Google Caption 数据集复现了 Stable Diffusion 的训练,并进行了优化。通过幻方自研的 hfai.pl 插件将源代码 Pytorch Lightning 框架与萤火集群的特性轻松整合,并通过 3FS、hfreduce、算子等优化工具对模型训练提速。

本文将分享我们对 Stable Diffusion 训练优化的心得体验,帮助研究者和开发者们降低研究门槛。

论文标题:High-Resolution Image Synthesis with Latent Diffusion Models

原文地址:https://arxiv.org/abs/2112.10752

<

diffusionstable diffusion数据集生产力优化工具urlai 作图研究者训练优化idegoogledalleai 绘画pytorch模型训练生成模型开发者扩散模型arxiv
  • 本文作者:李琛
  • 本文链接: https://wapzz.net/post-6930.html
  • 版权声明:本博客所有文章除特别声明外,均默认采用 CC BY-NC-SA 4.0 许可协议。
本站部分内容来源于网络转载,仅供学习交流使用。如涉及版权问题,请及时联系我们,我们将第一时间处理。
文章很赞!支持一下吧 还没有人为TA充电
为TA充电
还没有人为TA充电
0
  • 支付宝打赏
    支付宝扫一扫
  • 微信打赏
    微信扫一扫
感谢支持
文章很赞!支持一下吧
关于作者
2.3W+
5
0
1
WAP站长官方

使用Transformer 模型进行时间序列预测的Pytorch代码示例

上一篇

GitHub Copilot:让开发编程变得像说话一样简单

下一篇
  • 复制图片
按住ctrl可打开默认菜单