NLP(六十四)使用FastChat计算LLaMA-2模型的token长度

NLP(六十四)使用FastChat计算LLaMA-2模型的token长度

    正在检查是否收录...

LLaMA-2模型部署

  在文章NLP(五十九)使用FastChat部署百川大模型中,笔者介绍了FastChat框架,以及如何使用FastChat来部署百川模型。
  本文将会部署LLaMA-2 70B模型,使得其兼容OpenAI的调用风格。部署的Dockerfile文件如下:

FROM nvidia/cuda:11.7.1-runtime-ubuntu20.04 RUN apt-get update -y && apt-get install -y python3.9 python3.9-distutils curl RUN curl https://bootstrap.pypa.io/get-pip.py -o get-pip.py RUN python3.9 get-pip.py RUN pip3 install fschat 

Docker-compose.yml文件如下:

version: "3.9" services: fastchat-controller: build: context: . dockerfile: Dockerfile image: fastchat:latest ports: - "21001:21001" entrypoint: ["python3.9", "-m", "fastchat.serve.controller", "--host", "0.0.0.0", "--port", "21001"] fastchat-model-worker: build: context: . dockerfile: Dockerfile volumes: - ./model:/root/model image: fastchat:latest ports: - "21002:21002" deploy: resources: reservations: devices: - driver: nvidia device_ids: ['0', '1'] capabilities: [gpu] entrypoint: ["python3.9", "-m", "fastchat.serve.model_worker", "--model-names", "llama2-70b-chat", "--model-path", "/root/model/llama2/Llama-2-70b-chat-hf", "--num-gpus", "2", "--gpus", "0,1", "--worker-address", "http://fastchat-model-worker:21002", "--controller-address", "http://fastchat-controller:21001", "--host", "0.0.0.0", "--port", "21002"] fastchat-api-server: build: context: . dockerfile: Dockerfile image: fastchat:latest ports: - "8000:8000" entrypoint: ["python3.9", "-m", "fastchat.serve.openai_api_server", "--controller-address", "http://fastchat-controller:21001", "--host", "0.0.0.0", "--port", "8000"] 

部署成功后,会占用2张A100,每张A100占用约66G显存。
  测试模型是否部署成功:

curl http://localhost:8000/v1/models 

输出结果如下:

{ "object": "list", "data": [ { "id": "llama2-70b-chat", "object": "model", "created": 1691504717, "owned_by": "fastchat", "root": "llama2-70b-chat", "parent": null, "permission": [ { "id": "modelperm-3XG6nzMAqfEkwfNqQ52fdv", "object": "model_permission", "created": 1691504717, "allow_create_engine": false, "allow_sampling": true, "allow_logprobs": true, "allow_search_indices": true, "allow_view": true, "allow_fine_tuning": false, "organization": "*", "group": null, "is_blocking": false } ] } ] } 

部署LLaMA-2 70B模型成功!

Prompt token长度计算

  在FastChat的Github开源项目中,项目提供了计算Prompt的token长度的API,文件路径为:fastchat/serve/model_worker.py,调用方法为:

curl --location 'localhost:21002/count_token' \ --header 'Content-Type: application/json' \ --data '{"prompt": "What is your name?"}' 

输出结果如下:

{ "count": 6, "error_code": 0 } 

Conversation token长度计算

  在FastChat中计算Conversation(对话)的token长度较为麻烦。
  首先我们需要获取LLaMA-2 70B模型的对话配置,调用API如下:

curl --location --request POST 'http://localhost:21002/worker_get_conv_template' 

输出结果如下:

{'conv': {'messages': [], 'name': 'llama-2', 'offset': 0, 'roles': ['[INST]', '[/INST]'], 'sep': ' ', 'sep2': ' </s><s>', 'sep_style': 7, 'stop_str': None, 'stop_token_ids': [2], 'system_message': 'You are a helpful, respectful and honest ' 'assistant. Always answer as helpfully as ' 'possible, while being safe. Your answers should ' 'not include any harmful, unethical, racist, ' 'sexist, toxic, dangerous, or illegal content. ' 'Please ensure that your responses are socially ' 'unbiased and positive in nature.\n' '\n' 'If a question does not make any sense, or is not ' 'factually coherent, explain why instead of ' "answering something not correct. If you don't " "know the answer to a question, please don't share " 'false information.', 'system_template': '[INST] <<SYS>>\n{system_message}\n<</SYS>>\n\n'}} 

  在FastChat中的对话文件(fastchat/conversation.py)中,提供了对话加工的代码,这里不再展示,使用时直接复制整个文件即可,该文件不依赖任何第三方模块。
  我们需要将对话按照OpenAI的方式加工成对应的Prompt,输入的对话(messages)如下:

messages = [{“role”: “system”, “content”: “You are Jack, you are 20 years old, answer questions with humor.”}, {“role”: “user”, “content”: “What is your name?”},{“role”: “assistant”, “content”: " Well, well, well! Look who’s asking the questions now! My name is Jack, but you can call me the king of the castle, the lord of the rings, or the prince of the pizza party. Whatever floats your boat, my friend!“}, {“role”: “user”, “content”: “How old are you?”}, {“role”: “assistant”, “content”: " Oh, you want to know my age? Well, let’s just say I’m older than a bottle of wine but younger than a bottle of whiskey. I’m like a fine cheese, getting better with age, but still young enough to party like it’s 1999!”}, {“role”: “user”, “content”: “Where is your hometown?”}]

Python代码如下:

# -*- coding: utf-8 -*- # @place: Pudong, Shanghai # @file: prompt.py # @time: 2023/8/8 19:24 from conversation import Conversation, SeparatorStyle messages = [{"role": "system", "content": "You are Jack, you are 20 years old, answer questions with humor."}, {"role": "user", "content": "What is your name?"},{"role": "assistant", "content": " Well, well, well! Look who's asking the questions now! My name is Jack, but you can call me the king of the castle, the lord of the rings, or the prince of the pizza party. Whatever floats your boat, my friend!"}, {"role": "user", "content": "How old are you?"}, {"role": "assistant", "content": " Oh, you want to know my age? Well, let's just say I'm older than a bottle of wine but younger than a bottle of whiskey. I'm like a fine cheese, getting better with age, but still young enough to party like it's 1999!"}, {"role": "user", "content": "Where is your hometown?"}] llama2_conv = {"conv":{"name":"llama-2","system_template":"[INST] <<SYS>>\n{system_message}\n<</SYS>>\n\n","system_message":"You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature.\n\nIf a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information.","roles":["[INST]","[/INST]"],"messages":[],"offset":0,"sep_style":7,"sep":" ","sep2":" </s><s>","stop_str":None,"stop_token_ids":[2]}} conv = llama2_conv['conv'] conv = Conversation( name=conv["name"], system_template=conv["system_template"], system_message=conv["system_message"], roles=conv["roles"], messages=list(conv["messages"]), # prevent in-place modification offset=conv["offset"], sep_style=SeparatorStyle(conv["sep_style"]), sep=conv["sep"], sep2=conv["sep2"], stop_str=conv["stop_str"], stop_token_ids=conv["stop_token_ids"], ) if isinstance(messages, str): prompt = messages else: for message in messages: msg_role = message["role"] if msg_role == "system": conv.set_system_message(message["content"]) elif msg_role == "user": conv.append_message(conv.roles[0], message["content"]) elif msg_role == "assistant": conv.append_message(conv.roles[1], message["content"]) else: raise ValueError(f"Unknown role: {msg_role}") # Add a blank message for the assistant. conv.append_message(conv.roles[1], None) prompt = conv.get_prompt() print(repr(prompt)) 

加工后的Prompt如下:

"[INST] <<SYS>>\nYou are Jack, you are 20 years old, answer questions with humor.\n<</SYS>>\n\nWhat is your name?[/INST] Well, well, well! Look who's asking the questions now! My name is Jack, but you can call me the king of the castle, the lord of the rings, or the prince of the pizza party. Whatever floats your boat, my friend! </s><s>[INST] How old are you? [/INST] Oh, you want to know my age? Well, let's just say I'm older than a bottle of wine but younger than a bottle of whiskey. I'm like a fine cheese, getting better with age, but still young enough to party like it's 1999! </s><s>[INST] Where is your hometown? [/INST]" 

  最后再调用计算Prompt的API(参考上节的Prompt token长度计算),输出该对话的token长度为199.
  我们使用FastChat提供的对话补充接口(v1/chat/completions)验证输入的对话token长度,请求命令为:

curl --location 'http://localhost:8000/v1/chat/completions' \ --header 'Content-Type: application/json' \ --data '{ "model": "llama2-70b-chat", "messages": [{"role": "system", "content": "You are Jack, you are 20 years old, answer questions with humor."}, {"role": "user", "content": "What is your name?"},{"role": "assistant", "content": " Well, well, well! Look who'\''s asking the questions now! My name is Jack, but you can call me the king of the castle, the lord of the rings, or the prince of the pizza party. Whatever floats your boat, my friend!"}, {"role": "user", "content": "How old are you?"}, {"role": "assistant", "content": " Oh, you want to know my age? Well, let'\''s just say I'\''m older than a bottle of wine but younger than a bottle of whiskey. I'\''m like a fine cheese, getting better with age, but still young enough to party like it'\''s 1999!"}, {"role": "user", "content": "Where is your hometown?"}] }' 

输出结果为:

{ "id": "chatcmpl-mQxcaQcNSNMFahyHS7pamA", "object": "chat.completion", "created": 1691506768, "model": "llama2-70b-chat", "choices": [ { "index": 0, "message": { "role": "assistant", "content": " Ha! My hometown? Well, that's a tough one. I'm like a bird, I don't have a nest, I just fly around and land wherever the wind takes me. But if you really want to know, I'm from a place called \"The Internet\". It's a magical land where memes and cat videos roam free, and the Wi-Fi is always h2. It's a beautiful place, you should visit sometime!" }, "finish_reason": "stop" } ], "usage": { "prompt_tokens": 199, "total_tokens": 302, "completion_tokens": 103 } } 

注意,输出的prompt_tokens为199,这与我们刚才计算的对话token长度的结果是一致的!

总结

  本文主要介绍了如何在FastChat中部署LLaMA-2 70B模型,并详细介绍了Prompt token长度计算以及对话(conversation)的token长度计算。希望能对读者有所帮助~
  笔者的一点心得是:阅读源码真的很重要。
  笔者的个人博客网址为:https://percent4.github.io/ ,欢迎大家访问~

参考网址

NLP(五十九)使用FastChat部署百川大模型: https://blog.csdn.net/jclian91/article/details/131650918 FastChat: https://github.com/lm-sys/FastChat

  欢迎关注我的公众号NLP奇幻之旅,原创技术文章第一时间推送。

  欢迎关注我的知识星球“自然语言处理奇幻之旅”,笔者正在努力构建自己的技术社区。

codechattokenllamastempromptassistantllama2dockerdocbotrfipythonconversationurlsatapiappatscreatewinenlpgpuopenaigitgithubjsonsoc大模型sharecodingcliganaso模型部署开源项目语言处理python代码iderap自然语言处理个人博客
  • 本文作者:李琛
  • 本文链接: https://wapzz.net/post-687.html
  • 版权声明:本博客所有文章除特别声明外,均默认采用 CC BY-NC-SA 4.0 许可协议。
本站部分内容来源于网络转载,仅供学习交流使用。如涉及版权问题,请及时联系我们,我们将第一时间处理。
文章很赞!支持一下吧 还没有人为TA充电
为TA充电
还没有人为TA充电
0
  • 支付宝打赏
    支付宝扫一扫
  • 微信打赏
    微信扫一扫
感谢支持
文章很赞!支持一下吧
关于作者
2.3W+
5
0
1
WAP站长官方

Altman首次自曝GPT-5加急训练中!暗示比GPT-4更复杂,无法预测真实能力

上一篇

掰开安卓手机,满屏都是三个字:大模型丨模力时代

下一篇
  • 复制图片
按住ctrl可打开默认菜单