Dreambooth Stable Diffusion始化训练环境(AutoDL)

Dreambooth Stable Diffusion始化训练环境(AutoDL)

    正在检查是否收录...

以AutoDL为例

        以下代码源自:赛博华佗——秋叶:

        Akegarasu

环境选择

Miniconda: Miniconda是一个轻量级的Conda环境管理系统。它包含了conda、Python和一些常用的包,以及能够管理安装其他包的能力。Miniconda是Anaconda的一个简化版,Anaconda是一个流行的Python科学计算发行版。

conda3: 这指的是使用Conda环境管理系统,并且特指Python 3的版本。Conda是一个开源的包管理和环境管理系统,常用于科学计算领域,可以用来安装、运行和升级复杂的科学计算环境。

3.8(ubuntu20.04): 这里指的是使用Python 3.8版本,在Ubuntu 20.04操作系统上。Ubuntu 20.04是一个流行的Linux发行版,Python 3.8是这个版本的Python的一个较新的稳定版本。

11.3: 这个数字指的是NVIDIA CUDA的版本号,CUDA是NVIDIA开发的用于通用并行计算的编程架构,广泛用于深度学习和高性能计算任务。11.3是CUDA的一个具体版本号。

初始化脚本环境

        clone其项目后,首先利用 conda 创建 python 运行环境后再运行 install.sh

git clone https://github.com/Akegarasu/dreambooth-autodl.git cd dreambooth-audodl conda create -n diffusers python=3.10 conda init bash && source /root/.bashrc conda activate diffusers conda install ipykernel ipython kernel install --user --name=diffusers bash install.sh

        将项目文件夹移动到 /autodl-tmp 后打开 dreambooth-aki.ipynb 运行训练

import sys import os # 本镜像专属 os.environ["PATH"] = f'/root/miniconda3/envs/diffusers/bin:{os.environ["PATH"]}' os.environ["HF_HOME"] = ".cache" DB_SCRIPT_WORK_PATH = os.getcwd() # "/root/autodl-tmp/dreambooth-aki" !python --version %cd $DB_SCRIPT_WORK_PATH TRAINER = "train_dreambooth.py" CONVERTER = "convert_v3.py" BACK_CONVERTER = "back_convert.py" SRC_PATH = "./model-sd" MODEL_NAME = "./model-hf" # 模型保存路径 OUTPUT_DIR = "./output" !mkdir -p $OUTPUT_DIR

        这段代码是设置一个Jupyter笔记本的全局变量,主要用于准备环境以便于训练Stable Diffusion模型。代码执行的主要功能如下:

导入所需的Python库(sysos)。

设置环境变量:

"PATH":添加一个特定的路径到系统的PATH环境变量中,这个路径是针对一个特定的Python环境设置的,以确保可以访问所需的执行文件。 "HF_HOME":设置Hugging Face库的缓存目录。

获取当前工作目录的路径,并将其存储在变量DB_SCRIPT_WORK_PATH中。

执行系统命令来获取Python的版本信息,并切换到工作目录。

定义一些脚本和模型相关的变量:

TRAINER:用于训练模型的Python脚本文件名。 CONVERTER:用于转换模型格式的Python脚本文件名。 BACK_CONVERTER:用于将训练好的模型转换回原始格式的Python脚本文件名。 SRC_PATH:原始模型文件的路径。 MODEL_NAME:转换后的模型文件的保存路径。

定义模型输出目录OUTPUT_DIR,并创建该目录(如果它不存在的话)。

        这些步骤为接下来的模型训练和转换工作提供了必要的准备。它设置了环境变量、定义了关键文件路径和脚本名称,并确保了输出目录的存在。

    环境变量PATH

        环境变量PATH是操作系统用来查找可执行文件的目录列表。当你运行一个命令时,系统会在PATH中列出的目录里搜索该命令对应的可执行文件。

f'/root/miniconda3/envs/diffusers/bin:{os.environ["PATH"]}'

        这其中的冒号,其实是一个分隔符。。。。。。

        在PATH环境变量中,路径是按照从左到右的顺序进行搜索的。因此,冒号前面的路径(也就是在变量值的最开始的路径)会被优先搜索。如果在这些路径中找不到所需的可执行文件,系统会继续在冒号后面列出的路径中搜索,直到找到所需的可执行文件或者搜索完所有列出的路径。

        在这个特定的例子中,/root/miniconda3/envs/diffusers/bin被添加到了PATH的最前面,所以系统会首先在这个目录中寻找可执行文件。这种方法常用于确保使用特定环境或版本的程序,特别是在有多个版本的程序安装在系统上时。

os.environ["HF_HOME"] = ".cache"

os.environ:这是Python中的一个字典,它包含了当前shell环境的所有环境变量。通过修改这个字典,可以改变环境变量的值。

"HF_HOME":这是环境变量的名称。HF_HOME是由Hugging Face库使用的特定环境变量,通常用于指定Hugging Face相关文件(如模型缓存、配置文件等)的存储位置。

"= .cache":这将HF_HOME的值设置为.cache。这个值是一个相对路径,表示当前目录下的名为.cache的文件夹。

        将HF_HOME设置为.cache的效果是:当使用Hugging Face库(例如,加载模型、下载数据集等)时,它会将所有缓存的数据(如下载的预训练模型)保存到当前工作目录下的.cache文件夹中。这对于管理模型缓存非常有用,特别是在想要控制缓存位置或在多个项目之间共享缓存时。通过这种方式,你可以避免在系统的默认位置(通常是用户的主目录)中堆积过多的缓存文件。

!python --version

       这行代码在Jupyter笔记本中执行一个shell命令,用于检查当前环境中Python的版本。--version参数让Python打印出其版本信息。

DB_SCRIPT_WORK_PATH = os.getcwd() # "/root/autodl-tmp/dreambooth-aki" %cd $DB_SCRIPT_WORK_PATH

   %cd是Jupyter笔记本的魔术命令,用于改变当前工作目录。

OUTPUT_DIR = "./output" !mkdir -p $OUTPUT_DIR
在Jupyter笔记本中执行一个shell命令,用于创建目录。 mkdir是一个常用的Unix/Linux命令,用于创建新的目录。 -p参数告诉mkdir命令,如果目录不存在,则创建它;如果目录已经存在,不要报错(不要叫唤)。此外,-p参数还允许创建必要的父目录。

DreamBooth详解

DreamBooth | AiDraw

codepythondreamdreamboothtpuicon可执行文件scriptjupyter笔记本hugging facebash文件夹python脚本shell科学计算git管理系统操作系统linuxclonepython库createlinux命令url代码执行深度学习数据集预训练diffusion轻量级高性能计算高性能预训练模型模型训练githubstable diffusioniva
  • 本文作者:李琛
  • 本文链接: https://wapzz.net/post-6167.html
  • 版权声明:本博客所有文章除特别声明外,均默认采用 CC BY-NC-SA 4.0 许可协议。
本站部分内容来源于网络转载,仅供学习交流使用。如涉及版权问题,请及时联系我们,我们将第一时间处理。
文章很赞!支持一下吧 还没有人为TA充电
为TA充电
还没有人为TA充电
0
  • 支付宝打赏
    支付宝扫一扫
  • 微信打赏
    微信扫一扫
感谢支持
文章很赞!支持一下吧
关于作者
2.3W+
5
0
1
WAP站长官方

Midjourney词库

上一篇

智能AI写作系统+ChatGPT程序源码搭建部署教程+支持GPT4.0/AI绘画

下一篇
  • 复制图片
按住ctrl可打开默认菜单