Colossal-AI团队开源了SwiftInfer 大模型无限流式输入推理飙升46%

Colossal-AI团队开源了SwiftInfer 大模型无限流式输入推理飙升46%

    正在检查是否收录...

近日,国产开源项目SwiftInfer实现了无限流式输入推理,成功提升了大模型推理性能46%。这是一个重大突破,可以为多轮对话场景提供高效可靠的落地方案。

它采用了attention sink注意力机制、窗口注意力优化、KV Cache机制优化等方法,SwiftInfer的推理性能得到了极大提升,为大模型多轮对话推理提供低成本、低延迟、高吞吐的最佳实践。

项目地址:https://top.aibase.com/tool/swiftinfer

在这一方法中,使用了TensorRT的API,获得了接近于PyTorch API的模型编写体验。这对于进一步提升推理性能起到了重要作用。

SwiftInfer通过了解了注意力模块中Softmax的输出,发现了attention sink的现象,使得在多轮对话的情景下,生成效果更加稳定。

它使用了基于attention sink的注意力机制,无论是在计算复杂度还是生成效果上都表现优异。经过SwiftInfer的优化,推理性能提升非常明显。

Colossal-AI团队发布的SwiftInfer在推理性能上的提升很明显,为大模型多轮对话推理提供了高效可靠的落地方案。

Colossal-AI目前已获得GitHub星数三万五千多颗,位列全球TOP400,细分赛道排名世界第一,可通过高效多维并行、异构内存等,降低AI大模型训练/微调/推理的开发与应用成本,提升模型任务表现,降低GPU需求。

大模型多轮对话注意力api生成效果注意力机制模型训练pytorch低成本gputensorrt开源项目gitgithub模型推理最佳实践性能提升url
  • 本文作者:李琛
  • 本文链接: https://wapzz.net/post-5301.html
  • 版权声明:本博客所有文章除特别声明外,均默认采用 CC BY-NC-SA 4.0 许可协议。
本站部分内容来源于网络转载,仅供学习交流使用。如涉及版权问题,请及时联系我们,我们将第一时间处理。
文章很赞!支持一下吧 还没有人为TA充电
为TA充电
还没有人为TA充电
0
  • 支付宝打赏
    支付宝扫一扫
  • 微信打赏
    微信扫一扫
感谢支持
文章很赞!支持一下吧
关于作者
2.3W+
5
0
1
WAP站长官方

古风修仙美少女-InsCode Stable Diffusion 美图活动一期

上一篇

Jetson Orin安装riva以及llamaspeak,使用 Riva ASR/TTS 与 Llama 进行实时交谈,大语言模型成功运行笔记

下一篇
  • 复制图片
按住ctrl可打开默认菜单