windows10搭建llama大模型

windows10搭建llama大模型

    正在检查是否收录...
一言准备中...

背景

    随着人工时代的到来及日渐成熟,大模型已慢慢普及,可以为开发与生活提供一定的帮助及提升工作及生产效率。所以在新的时代对于开发者来说需要主动拥抱变化,主动成长。        

LLAMA介绍

    llama全称:Large Language Model Meta AI是由meta(原facebook)开源的一个聊天对话大模型。根据参数规模,Meta提供了70亿、130亿、330亿和650亿四种不同参数规模的LLaMA模型,并使用20种语言进行了训练。与现有最佳的大型语言模型相比,LLaMA模型在性能上具有竞争力。
    官网:https://github.com/facebookresearch/llama

注意:本文是llama不是llama2,原理一致!

硬件要求

硬件名称

要求

备注

磁盘

单盘最少120g以上

模型很大的

内存
最少16g
最好32g gpu
可以没有
当然最好有(要英伟达的)

安装软件

涉及软件版本

软件名称

版本

备注

anaconda3

conda 22.9.0

https://www.anaconda.com/

python

3.9.16

anaconda自带

peft

0.2.0

参数有效微调

sentencepiece

0.1.97

分词算法

transformers

4.29.2

下载有点久

git

2.40.1


torch

2.0.1


mingw


用window安装

protobuf

3.19.0


cuda

https://blog.csdn.net/zcs2632008/article/details/127025294

有gpu才需要安装

anaconda3安装

    安装这个anaconda建议不要在c盘,除非你的c盘够大。

请参考:https://blog.csdn.net/scorn_/article/details/106591160?ops_request_misc=%257B%2522request%255Fid%2522%253A%2522168601805516800197073452%2522%252C%2522scm%2522%253A%252220140713.130102334..%2522%257D&request_id=168601805516800197073452&biz_id=0&utm_medium=distribute.pc_search_result.none-task-blog-2~all~sobaiduend~default-1-106591160-null-null.142^v88^control,239^v2^insert_chatgpt&utm_term=windows10%E5%AE%89%E8%A3%85anaconda3%E6%95%99%E7%A8%8B&spm=1018.2226.3001.4187

创建环境
conda create -n llama python=3.9.16 conda init
进入环境
conda info -e conda activate llama
后面验证python

peft安装

pip install peft==0.2.0

transformers安装

注意:这个会很大~有点久~

conda install transformers==4.29.2

安装git

https://blog.csdn.net/dou3516/article/details/121740303

安装torch

pip install torch==2.0.1

安装mingw

win+r输入powershell
遇到禁止执行脚本问题:(如果没有异常请跳出这步)

参考

https://blog.csdn.net/weixin_43999496/article/details/115871373

配置权限
get-executionpolicy set-executionpolicy RemoteSigned
然后输入Y
安装 mingw
iex "& {$(irm get.scoop.sh)} -RunAsAdmin"

安装好后分别运行下面两个命令(添加库):

scoop bucket add extras
scoop bucket add main

输入命令安装mingw

scoop install mingw

安装:protobuf

pip install protobuf==3.19.0

项目配置

下载代码

需要下载两个模型, 一个是原版的LLaMA模型, 一个是扩充了中文的模型, 后续会进行一个合并模型的操作

原版模型下载地址(要代理):https://ipfs.io/ipfs/Qmb9y5GCkTG7ZzbBWMu2BXwMkzyCKcUjtEKPpgdZ7GEFKm/

备用:nyanko7/LLaMA-7B at main

下载不了的话,请关注【技术趋势】回复llama1获取。

创建文件夹

git lfs install

下载中文模型

git clone https://huggingface.co/ziqingyang/chinese-alpaca-lora-7b

补充Linux图:

下载羊驼模型(有点大)

先建一个文件夹:path_to_original_llama_root_dir

在里面再建一个7B文件夹并把tokenizer.model挪进来。

7B里面放的内容

最终需要的内容如下:

合并模型

下载:convert_llama_weights_to_hf.py

?convert_llama_weights_to_hf.py

或将以下代码放到

# Copyright 2022 EleutherAI and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import gc import json import math import os import shutil import warnings import torch from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer try:     from transformers import LlamaTokenizerFast except ImportError as e:     warnings.warn(e)     warnings.warn(         "The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion"     )     LlamaTokenizerFast = None """ Sample usage: ``` python src/transformers/models/llama/convert_llama_weights_to_hf.py \     --input_dir /path/to/downloaded/llama/weights --model_size 7B --output_dir /output/path ``` Thereafter, models can be loaded via: ```py from transformers import LlamaForCausalLM, LlamaTokenizer model = LlamaForCausalLM.from_pretrained("/output/path") tokenizer = LlamaTokenizer.from_pretrained("/output/path") ``` Important note: you need to be able to host the whole model in RAM to execute this script (even if the biggest versions come in several checkpoints they each contain a part of each weight of the model, so we need to load them all in RAM). """ INTERMEDIATE_SIZE_MAP = {     "7B": 11008,     "13B": 13824,     "30B": 17920,     "65B": 22016, } NUM_SHARDS = {     "7B": 1,     "13B": 2,     "30B": 4,     "65B": 8, } def compute_intermediate_size(n):     return int(math.ceil(n * 8 / 3) + 255) // 256 * 256 def read_json(path):     with open(path, "r") as f:         return json.load(f) def write_json(text, path):     with open(path, "w") as f:         json.dump(text, f) def write_model(model_path, input_base_path, model_size):     os.makedirs(model_path, exist_ok=True)     tmp_model_path = os.path.join(model_path, "tmp")     os.makedirs(tmp_model_path, exist_ok=True)     params = read_json(os.path.join(input_base_path, "params.json"))     num_shards = NUM_SHARDS[model_size]     n_layers = params["n_layers"]     n_heads = params["n_heads"]     n_heads_per_shard = n_heads // num_shards     dim = params["dim"]     dims_per_head = dim // n_heads     base = 10000.0     inv_freq = 1.0 / (base ** (torch.arange(0, dims_per_head, 2).float() / dims_per_head))     # permute for sliced rotary     def permute(w):         return w.view(n_heads, dim // n_heads // 2, 2, dim).transpose(1, 2).reshape(dim, dim)     print(f"Fetching all parameters from the checkpoint at {input_base_path}.")     # Load weights     if model_size == "7B":         # Not sharded         # (The sharded implementation would also work, but this is simpler.)         loaded = torch.load(os.path.join(input_base_path, "consolidated.00.pth"), map_location="cpu")     else:         # Sharded         loaded = [             torch.load(os.path.join(input_base_path, f"consolidated.{i:02d}.pth"), map_location="cpu")             for i in range(num_shards)         ]     param_count = 0     index_dict = {"weight_map": {}}     for layer_i in range(n_layers):         filename = f"pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin"         if model_size == "7B":             # Unsharded             state_dict = {                 f"model.layers.{layer_i}.self_attn.q_proj.weight": permute(                     loaded[f"layers.{layer_i}.attention.wq.weight"]                 ),                 f"model.layers.{layer_i}.self_attn.k_proj.weight": permute(                     loaded[f"layers.{layer_i}.attention.wk.weight"]                 ),                 f"model.layers.{layer_i}.self_attn.v_proj.weight": loaded[f"layers.{layer_i}.attention.wv.weight"],                 f"model.layers.{layer_i}.self_attn.o_proj.weight": loaded[f"layers.{layer_i}.attention.wo.weight"],                 f"model.layers.{layer_i}.mlp.gate_proj.weight": loaded[f"layers.{layer_i}.feed_forward.w1.weight"],                 f"model.layers.{layer_i}.mlp.down_proj.weight": loaded[f"layers.{layer_i}.feed_forward.w2.weight"],                 f"model.layers.{layer_i}.mlp.up_proj.weight": loaded[f"layers.{layer_i}.feed_forward.w3.weight"],                 f"model.layers.{layer_i}.input_layernorm.weight": loaded[f"layers.{layer_i}.attention_norm.weight"],                 f"model.layers.{layer_i}.post_attention_layernorm.weight": loaded[f"layers.{layer_i}.ffn_norm.weight"],             }         else:             # Sharded             # Note that in the 13B checkpoint, not cloning the two following weights will result in the checkpoint             # becoming 37GB instead of 26GB for some reason.             state_dict = {                 f"model.layers.{layer_i}.input_layernorm.weight": loaded[0][                     f"layers.{layer_i}.attention_norm.weight"                 ].clone(),                 f"model.layers.{layer_i}.post_attention_layernorm.weight": loaded[0][                     f"layers.{layer_i}.ffn_norm.weight"                 ].clone(),             }             state_dict[f"model.layers.{layer_i}.self_attn.q_proj.weight"] = permute(                 torch.cat(                     [                         loaded[i][f"layers.{layer_i}.attention.wq.weight"].view(n_heads_per_shard, dims_per_head, dim)                         for i in range(num_shards)                     ],                     dim=0,                 ).reshape(dim, dim)             )             state_dict[f"model.layers.{layer_i}.self_attn.k_proj.weight"] = permute(                 torch.cat(                     [                         loaded[i][f"layers.{layer_i}.attention.wk.weight"].view(n_heads_per_shard, dims_per_head, dim)                         for i in range(num_shards)                     ],                     dim=0,                 ).reshape(dim, dim)             )             state_dict[f"model.layers.{layer_i}.self_attn.v_proj.weight"] = torch.cat(                 [                     loaded[i][f"layers.{layer_i}.attention.wv.weight"].view(n_heads_per_shard, dims_per_head, dim)                     for i in range(num_shards)                 ],                 dim=0,             ).reshape(dim, dim)             state_dict[f"model.layers.{layer_i}.self_attn.o_proj.weight"] = torch.cat(                 [loaded[i][f"layers.{layer_i}.attention.wo.weight"] for i in range(num_shards)], dim=1             )             state_dict[f"model.layers.{layer_i}.mlp.gate_proj.weight"] = torch.cat(                 [loaded[i][f"layers.{layer_i}.feed_forward.w1.weight"] for i in range(num_shards)], dim=0             )             state_dict[f"model.layers.{layer_i}.mlp.down_proj.weight"] = torch.cat(                 [loaded[i][f"layers.{layer_i}.feed_forward.w2.weight"] for i in range(num_shards)], dim=1             )             state_dict[f"model.layers.{layer_i}.mlp.up_proj.weight"] = torch.cat(                 [loaded[i][f"layers.{layer_i}.feed_forward.w3.weight"] for i in range(num_shards)], dim=0             )         state_dict[f"model.layers.{layer_i}.self_attn.rotary_emb.inv_freq"] = inv_freq         for k, v in state_dict.items():             index_dict["weight_map"][k] = filename             param_count += v.numel()         torch.save(state_dict, os.path.join(tmp_model_path, filename))     filename = f"pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin"     if model_size == "7B":         # Unsharded         state_dict = {             "model.embed_tokens.weight": loaded["tok_embeddings.weight"],             "model.norm.weight": loaded["norm.weight"],             "lm_head.weight": loaded["output.weight"],         }     else:         state_dict = {             "model.norm.weight": loaded[0]["norm.weight"],             "model.embed_tokens.weight": torch.cat(                 [loaded[i]["tok_embeddings.weight"] for i in range(num_shards)], dim=1             ),             "lm_head.weight": torch.cat([loaded[i]["output.weight"] for i in range(num_shards)], dim=0),         }     for k, v in state_dict.items():         index_dict["weight_map"][k] = filename         param_count += v.numel()     torch.save(state_dict, os.path.join(tmp_model_path, filename))     # Write configs     index_dict["metadata"] = {"total_size": param_count * 2}     write_json(index_dict, os.path.join(tmp_model_path, "pytorch_model.bin.index.json"))     config = LlamaConfig(         hidden_size=dim,         intermediate_size=compute_intermediate_size(dim),         num_attention_heads=params["n_heads"],         num_hidden_layers=params["n_layers"],         rms_norm_eps=params["norm_eps"],     )     config.save_pretrained(tmp_model_path)     # Make space so we can load the model properly now.     del state_dict     del loaded     gc.collect()     print("Loading the checkpoint in a Llama model.")     model = LlamaForCausalLM.from_pretrained(tmp_model_path, torch_dtype=torch.float16, low_cpu_mem_usage=True)     # Avoid saving this as part of the config.     del model.config._name_or_path     print("Saving in the Transformers format.")     model.save_pretrained(model_path)     shutil.rmtree(tmp_model_path) def write_tokenizer(tokenizer_path, input_tokenizer_path):     # Initialize the tokenizer based on the `spm` model     tokenizer_class = LlamaTokenizer if LlamaTokenizerFast is None else LlamaTokenizerFast     print(f"Saving a {tokenizer_class.__name__} to {tokenizer_path}.")     tokenizer = tokenizer_class(input_tokenizer_path)     tokenizer.save_pretrained(tokenizer_path) def main():     parser = argparse.ArgumentParser()     parser.add_argument(         "--input_dir",         help="Location of LLaMA weights, which contains tokenizer.model and model folders",     )     parser.add_argument(         "--model_size",         choices=["7B", "13B", "30B", "65B", "tokenizer_only"],     )     parser.add_argument(         "--output_dir",         help="Location to write HF model and tokenizer",     )     args = parser.parse_args()     if args.model_size != "tokenizer_only":         write_model(             model_path=args.output_dir,             input_base_path=os.path.join(args.input_dir, args.model_size),             model_size=args.model_size,         )     spm_path = os.path.join(args.input_dir, "tokenizer.model")     write_tokenizer(args.output_dir, spm_path) if __name__ == "__main__":     main()
执行格式转换命令
python convert_llama_weights_to_hf.py --input_dir path_to_original_llama_root_dir --model_size 7B --output_dir path_to_original_llama_hf_dir

注意:这一步有点久(很长时间)

会报的错:

会在目录中生成一个新目录:path_to_original_llama_hf_dir

执行模型合并命令

下载以下文件到llama目录

?merge_llama_with_chinese_lora.py

执行合并模型命令
python merge_llama_with_chinese_lora.py --base_model path_to_original_llama_hf_dir --lora_model chinese-alpaca-lora-7b --output_dir path_to_output_dir

会生成一个目录:path_to_output_dir

下载模型

在llama目录下载代码如下:

git clone http://github.com/ggerganov/llama.cpp

遇到报错

解决办法执行命令

git config --global --unset http.proxy

编译模型&转换格式

编译文件

注意:由于前端我是用powershell方式进行安装所以用第一种方式

#进入 llama.app cd llama.app #通过powershell安装的mingw进行编译 cmake . -G "MinGW Makefiles" #进行构建 cmake --build . --config Release

#进入 llama.app cd llama.app #创建 build文件夹 mkdir build #进入build cd build #编译 cmake .. #构建 cmake --build . --config Release

移动文件配置

在 llama.app 目录中新建目录 zh-models

将path_to_output_dir文件夹内的consolidated.00.pth和params.json文件放入上面格式中的位置

将path_to_output_dir文件夹内的tokenizer.model文件放在跟7B文件夹同级的位置

最终如下:

转换格式

注意:到 llama.cpp 目录

将 .pth模型权重转换为ggml的FP16格式

生成文件路径为zh-models/7B/ggml-model-f16.bin,执行命令如下:

python convert-pth-to-ggml.py zh-models/7B/ 1

生成结果

对FP16模型进行4-bit量化

执行命令:

D:\ai\llama\llama.cpp\bin\quantize.exe ./zh-models/7B/ggml-model-f16.bin ./zh-models/7B/ggml-model-q4_0.bin 2

生成量化模型文件路径为zh-models/7B/ggml-model-q4_0.bin

运行模型

cd D:\ai\llama\llama.cpp D:\ai\llama\llama.cpp\bin\main.exe -m zh-models/7B/ggml-model-q4_0.bin --color -f prompts/alpaca.txt -ins -c 2048 --temp 0.2 -n 256 --repeat_penalty 1.3

结果

最后

     我知道很多同学可能觉得学习大模型需要懂python有一定的难度,当然我是建议先学习好一个语言后再去学习其它语言,其实按照我过来的经验,我觉得python或java都好,语言语法都差不多,只是一个工具只是看我们要不要用。毕竟有java后端的基础再去学python,本人两周基本就上手了。当然还是建议有一个主线,再展开,而不是出什么学什么,真没必要。但是对于技术来说要看价值及发展,有可能现在很流行的技术半年或几年后就过了。当然也不是完全说固步自封,一切看自身条件(阶段、能力、意愿、时间等)、社会发展、价值等。

 参考文章:

    https://zhuanlan.zhihu.com/p/617952293

    https://zhuanlan.zhihu.com/p/632102048?utm_id=0

    https://www.bilibili.com/read/cv24984542/

llamacodetokentpupythonjsonparsetransformersgittransformer文件夹appclonellmutmpowershellpytorchshellcpu大模型alpacagpufacebookmacgithubjavahuggingfacechatgptmediumlinuxllama2聊天对话生产效率scriptcreateasoconversionpromptwritingbaidu语言模型gpt大型语言模型
  • 本文作者:WAP站长网
  • 本文链接: https://wapzz.net/post-3551.html
  • 版权声明:本博客所有文章除特别声明外,均默认采用 CC BY-NC-SA 4.0 许可协议。
本站部分内容来源于网络转载,仅供学习交流使用。如涉及版权问题,请及时联系我们,我们将第一时间处理。
文章很赞!支持一下吧 还没有人为TA充电
为TA充电
还没有人为TA充电
0
  • 支付宝打赏
    支付宝扫一扫
  • 微信打赏
    微信扫一扫
感谢支持
文章很赞!支持一下吧
关于作者
2.7W+
9
1
2
WAP站长官方

哀悼!55岁商汤科技创始人汤晓鸥突然离世,他撑起中国计算机视觉研究半壁江山

上一篇

实时DeepFake各路名人!输入名字就能秒换脸

下一篇
  • 复制图片
按住ctrl可打开默认菜单