邢波团队提出全开源倡议LLM360 让大模型实现真正的透明

邢波团队提出全开源倡议LLM360 让大模型实现真正的透明

    正在检查是否收录...

开源模型在人工智能领域展现强大活力,但闭源策略限制了LLM(大型语言模型)的发展。邢波团队提出的LLM360全面开源倡议旨在解决这一问题。该框架明确了包括训练数据、代码、模型检查点和性能指标在内的各方面细节,为当前和未来的开源模型树立了透明度的样本。

论文地址:https://arxiv.org/pdf/2312.06550.pdf

项目网页:https://www.llm360.ai/

博客:https://www.llm360.ai/blog/introducing-llm360-fully-transparent-open-source-llms.html

LLM360的核心组成部分包括训练数据集、训练代码与配置、模型检查点以及性能指标。这一全方位的开源使得研究者可以更好地在社区中分享与流通,推动人工智能领域的开放合作研究。同时,LLM360框架下发布的AMBER和CRYSTALCODER是两个从头开始预训练的大型语言模型,为研究者提供了开发经验和性能评估结果。

AMBER是基于1.3T token进行预训练的7B英语语言模型,性能相对较强。而CRYSTALCODER是基于1.4T token训练的7B语言模型,在语言和代码任务之间取得了很好的平衡。这两个模型的开源不仅提供了性能评估结果,还为整个LLM领域的研究提供了实质性的经验和教训。

总体而言,LLM360的提出为大型语言模型的透明训练提供了一个标准,推动了开源模型的发展,加速了人工智能领域的进步。这一全面开源的趋势有望促进更多研究者的参与与合作,推动人工智能技术的不断创新。

llm语言模型人工智能大型语言模型开源模型研究者预训练pdf性能评估训练数据codetokenurl训练数据集llms全方位lmshtml人工智能技术透明度智能技术数据集arxiv
  • 本文作者:李琛
  • 本文链接: https://wapzz.net/post-3258.html
  • 版权声明:本博客所有文章除特别声明外,均默认采用 CC BY-NC-SA 4.0 许可协议。
本站部分内容来源于网络转载,仅供学习交流使用。如涉及版权问题,请及时联系我们,我们将第一时间处理。
文章很赞!支持一下吧 还没有人为TA充电
为TA充电
还没有人为TA充电
0
  • 支付宝打赏
    支付宝扫一扫
  • 微信打赏
    微信扫一扫
感谢支持
文章很赞!支持一下吧
关于作者
2.3W+
5
0
1
WAP站长官方

stable diffusion打造自己专属的LORA模型

上一篇

InsCode Stable Diffusion 美图活动投稿

下一篇
  • 复制图片
按住ctrl可打开默认菜单