技术报告:Efficient and Effective Text Encoding for Chinese LLaMA AND Alpaca

技术报告:Efficient and Effective Text Encoding for Chinese LLaMA AND Alpaca

    正在检查是否收录...

技术报告:Efficient and Effective Text Encoding for Chinese LLaMA AND Alpaca

Introduction Chinese LLaMA Chinese Alpaca Lora-Fine-tuning 实验 7B pre- training Instruction-Tuning 13B Pre-Training Instruct-Tuning

Introduction

首先作者说了最近ChatGPT等模型在AGI领域表现出了很好的性能,但是收到算力、闭源的限制,阻碍了研究。

然后Meta与MIT分别开源了LLaMA、Alpaca,这让研究有了希望。

然后作者说这两个模型是基于英文预料训练的,词表中的中文只有几百个,中文性能不好,然后作者通过扩充词表等方法证明了LLaMA与Alpaca在其他语言可以有提高表现的可能性。

文章主要有以下贡献:

为LLaMA、Alpaca的原始词表拓展了中文词表用20000个token。 用Lora减少了算力消耗。 验证 LLaMA、Alpaca在中文上面的表现。 开源了研究与资源。

Chinese LLaMA

LLaMA是一个在1.4T左右token上预训练的模型,但是它的中文能力一塌糊涂(虽然llama支持回退中文字符,但是字节码不能很好的表示中文),为了解决这个问题,作者做了如下改进:

为了增强tokenizer使它增强Chinese text,作者用Sentence Piece训练了一个新的中文tokenizer,与原始的词表合并。 修改embedding去适配新的词表,新的向量为了不影响以前的token,添加在了以前的embedding matrices末尾。

初步实验展示,在表达更清楚的同时,所需要的token长度几乎少了一倍。

Chinese Alpaca

得到Chinese LLaMA后,采取指令微调的形式去获得Chinese Alpaca,其中属于格式如下:

与原始模型的不同是没有input(我觉得这样更符合中国方式的问答),如果下游数据input中含有数据,通过 \n合并instruction与input,其中\n被视为一个额外的 padding token。

Lora-Fine-tuning

这个阶段与以前并无二致,在LLaMA到Chinese-LLaMA,Alpaca到Chinese Alpaca阶段都是使用的这个技术。

实验

7B

pre- training

阶段1:我们在模型中固定transformer编码器的参数,并仅训练
Embedding,在最小化干扰的同时调整新添加的中文词向量
到原始模型。
阶段2:将LoRA权重(适配器)添加到注意力机制中,并训练ebeddings、LM头和新添加的LoRA参数。

Instruction-Tuning

指令微调在获得预训练模型后,我们还使用LoRA进行高效的微调,增加了可训练参数的数量 。
通过向MLP层添加LoRA适配器。我们使用大约2M数据点,并爬取了SFT数据以调整7B模型。

13B

Pre-Training

预训练13B模型的预训练过程与7B的基本相同模型,除了我们在预训练中跳过阶段1。我们直接把LoRA应用到 训练的注意事项和mlp,同时将嵌入和LM头设置为可训练的。

Instruct-Tuning

指令微调LoRA设置和可训练参数保持不变,训练的阶段。我们为13B模型使用额外的1M爬取的自指导数据点微调,导致13B模型的总数据大小为3M。

超参数:

llamaalpacatoken预训练fine-tuning适配器chatgptgpttransformer预训练模型chat注意力coding注意力机制url
  • 本文作者:李琛
  • 本文链接: https://wapzz.net/post-3094.html
  • 版权声明:本博客所有文章除特别声明外,均默认采用 CC BY-NC-SA 4.0 许可协议。
本站部分内容来源于网络转载,仅供学习交流使用。如涉及版权问题,请及时联系我们,我们将第一时间处理。
文章很赞!支持一下吧 还没有人为TA充电
为TA充电
还没有人为TA充电
0
  • 支付宝打赏
    支付宝扫一扫
  • 微信打赏
    微信扫一扫
感谢支持
文章很赞!支持一下吧
关于作者
2.3W+
5
0
1
WAP站长官方

马斯克的AI机器人说自己不能违反OpenAI使用政策,业界分析:可能是这样

上一篇

OpenAI将修复GPT4变懒问题 已有一个多月未更新

下一篇
  • 复制图片
按住ctrl可打开默认菜单