最强“全开源”多模态分割一切大模型APE

最强“全开源”多模态分割一切大模型APE

    正在检查是否收录...

APE 是一种全开源的多模态分割模型,其独特之处在于采用了独立建模每个类别名实例的方法。以往的方法通常将多个类别名联结成一个单独的 Prompt,但 APE 通过对每个类别名或描述短语进行独立建模,可以学习到不同实例之间的差异。此外,APE 还通过压缩 Word-Level Embeddings 为 Sentence-Level Embeddings 来减少计算复杂度和内存消耗,从而有效地表达语义信息。

论文地址:https://arxiv.org/pdf/2312.02153.pdf

开源链接:https://github.com/shenyunhang/APE

Demo链接:https://huggingface.co/spaces/shenyunhang/APE_demo

APE 采用了不同的特征融合方式来处理不同类型的 Prompt。对于纯类别名的文本特征,采用一种 “zero” 文本 token 作为替代,以避免过拟合问题。而对于语言描述的文本特征,采用特定的融合方式将其与视觉特征进行语义级的理解。此外,APE 还通过矩阵乘法计算 Object Embeddings 和 Prompt Embeddings 之间的相似度,从而实现一次性检测和分割。

APE 还通过统一前景和背景粒度来提高分割效果。在分割任务中,前景和背景的粒度是不同的,但传统方法往往面临前背景冲突的问题。为此,APE 提出统一前景和背景的粒度,将背景的不同块视为独立的标签,从而使模型可以采用统一的架构训练前景和背景数据,并方便地融入大规模的 Class-Agnostic 数据。

APE 在各个检测、分割和指向性检测数据集上都取得了强力结果。特别是在 D3数据集上,APE 的表现显著优于其他方法。在开集检测任务中,APE 在常见数据集上的效果也明显优于其他方法。此外,APE 还在开集分割任务和视觉定位任务上取得了竞争性的结果,在 RoboFlow100和 ODinW 评测基准上取得了新的 SOTA。

APE 是一种非常有潜力的多模态分割模型,具有广泛的应用前景。通过独立建模每个类别名实例、压缩 Word-Level Embeddings 为 Sentence-Level Embeddings、采用不同的特征融合方式、通过矩阵乘法进行 Object Embeddings 和 Prompt Embeddings 之间的相似度计算以及统一前景和背景粒度,APE 在多个常见数据集上取得了强力的分割效果,并展现出竞争力的结果。未来的研究可以进一步探索 APE 在其他视觉任务中的应用,以及对其方法进行优化和改进。

数据集promptpdf多模态wordgithubgit视觉特征huggingface视觉定位flowtoken评测基准urlarxiv
  • 本文作者:李琛
  • 本文链接: https://wapzz.net/post-2915.html
  • 版权声明:本博客所有文章除特别声明外,均默认采用 CC BY-NC-SA 4.0 许可协议。
本站部分内容来源于网络转载,仅供学习交流使用。如涉及版权问题,请及时联系我们,我们将第一时间处理。
文章很赞!支持一下吧 还没有人为TA充电
为TA充电
还没有人为TA充电
0
  • 支付宝打赏
    支付宝扫一扫
  • 微信打赏
    微信扫一扫
感谢支持
文章很赞!支持一下吧
关于作者
2.3W+
5
0
1
WAP站长官方

触手可及的 GPT —— LLaMA

上一篇

谷歌Bard入门指南

下一篇
  • 复制图片
按住ctrl可打开默认菜单