使用 PAI-Blade 优化 Stable Diffusion 推理流程(二)

使用 PAI-Blade 优化 Stable Diffusion 推理流程(二)

    正在检查是否收录...
一言准备中...

背景

上一篇中,我们使用了 PAI-Blade 优化了 diffusers 中 Stable Diffusion 模型。本篇,我们继续介绍使用 PAI-Blade 优化 LoRA 和 Controlnet 的推理流程。相关优化已经同样在 registry.cn-beijing.aliyuncs.com/blade_demo/blade_diffusion镜像中可以直接使用。同时,我们将介绍 Stable-Diffusion-webui 中集成 PAI-Blade 优化的方法。

LoRA优化

PAI-Blade优化LoRA的方式,与前文方法基本相同。包括:加载模型、优化模型、替换原始模型。以下仅介绍与前文不同的部分。

首先,加载Stable DIffusion模型后,需要加载LoRA权重。

pipe.unet.load_attn_procs("lora/")

使用LoRA时,用户可能需要切换不同的LoRA权重,尝试不同的风格。因此,PAI-Blade需要在优化配置中,传入freeze_module=False,使得优化过程中,不对权重进行编译优化,从而不影响模型加载权重的功能。通过这种方式,PAI-Blade优化后的模型,依然可以使用pipe.unet.load_attn_procs()方式加载LoRA的权重,而不需要重新编译优化。

由于模型权重未进行优化流程,一些对常量的优化无法进行,因此会损失部分优化空间。为了解决性能受损的问题,PAI-Blade中,使用了部分patch,对原始模型进行python层级的替换,使得模型更适合PAI-Blade优化。通过在优化前,使用 torch_blade.monkey_patch优化 Stable Diffusion 模型中的 unet和vae部分,能更好的发挥PAI-Blade能力。

from torch_blade.monkey_patch import patch_utils patch_utils.patch_conv2d(pipe.vae.decoder) patch_utils.patch_conv2d(pipe.unet) opt_cfg = torch_blade.Config() ... opt_cfg.freeze_module = False with opt_cfg, torch.no_grad(): ...

如果没有LoRA权重切换的需求,可以忽略上述步骤,获得更快的推理速度。

Benchmark

我们在A100/A10上测试了上述对LoRA优化的结果,测试模型为 runwayml/stable-diffusion-v1-5,测试采样步数为50。

ControlNet适配

根据 

codediffusionstable diffusioncontrolnetpythonwebuiweb优化流程url
  • 本文作者:WAP站长网
  • 本文链接: https://wapzz.net/post-251.html
  • 版权声明:本博客所有文章除特别声明外,均默认采用 CC BY-NC-SA 4.0 许可协议。
本站部分内容来源于网络转载,仅供学习交流使用。如涉及版权问题,请及时联系我们,我们将第一时间处理。
文章很赞!支持一下吧 还没有人为TA充电
为TA充电
还没有人为TA充电
0
  • 支付宝打赏
    支付宝扫一扫
  • 微信打赏
    微信扫一扫
感谢支持
文章很赞!支持一下吧
关于作者
2.7W+
9
1
2
WAP站长官方

AUTOMATIC1111/stable-diffusion-webui安装教程

上一篇

Stable Diffusion出现错误: AttributeError: ‘NoneType‘ object has no attribute ‘keys‘

下一篇
  • 复制图片
按住ctrl可打开默认菜单