whisper large-v3 模型文件下载链接

whisper large-v3 模型文件下载链接

    正在检查是否收录...
#源码里找到的 _MODELS = { "tiny.en": "https://openaipublic.azureedge.net/main/whisper/models/d3dd57d32accea0b295c96e26691aa14d8822fac7d9d27d5dc00b4ca2826dd03/tiny.en.pt", "tiny": "https://openaipublic.azureedge.net/main/whisper/models/65147644a518d12f04e32d6f3b26facc3f8dd46e5390956a9424a650c0ce22b9/tiny.pt", "base.en": "https://openaipublic.azureedge.net/main/whisper/models/25a8566e1d0c1e2231d1c762132cd20e0f96a85d16145c3a00adf5d1ac670ead/base.en.pt", "base": "https://openaipublic.azureedge.net/main/whisper/models/ed3a0b6b1c0edf879ad9b11b1af5a0e6ab5db9205f891f668f8b0e6c6326e34e/base.pt", "small.en": "https://openaipublic.azureedge.net/main/whisper/models/f953ad0fd29cacd07d5a9eda5624af0f6bcf2258be67c92b79389873d91e0872/small.en.pt", "small": "https://openaipublic.azureedge.net/main/whisper/models/9ecf779972d90ba49c06d968637d720dd632c55bbf19d441fb42bf17a411e794/small.pt", "medium.en": "https://openaipublic.azureedge.net/main/whisper/models/d7440d1dc186f76616474e0ff0b3b6b879abc9d1a4926b7adfa41db2d497ab4f/medium.en.pt", "medium": "https://openaipublic.azureedge.net/main/whisper/models/345ae4da62f9b3d59415adc60127b97c714f32e89e936602e85993674d08dcb1/medium.pt", "large-v1": "https://openaipublic.azureedge.net/main/whisper/models/e4b87e7e0bf463eb8e6956e646f1e277e901512310def2c24bf0e11bd3c28e9a/large-v1.pt", "large-v2": "https://openaipublic.azureedge.net/main/whisper/models/81f7c96c852ee8fc832187b0132e569d6c3065a3252ed18e56effd0b6a73e524/large-v2.pt", "large-v3": "https://openaipublic.azureedge.net/main/whisper/models/e5b1a55b89c1367dacf97e3e19bfd829a01529dbfdeefa8caeb59b3f1b81dadb/large-v3.pt", "large": "https://openaipublic.azureedge.net/main/whisper/models/e5b1a55b89c1367dacf97e3e19bfd829a01529dbfdeefa8caeb59b3f1b81dadb/large-v3.pt", } 

加速下载
apt install aria2

aria2c -x 16 https://openaipublic.azureedge.net/main/whisper/models/e5b1a55b89c1367dacf97e3e19bfd829a01529dbfdeefa8caeb59b3f1b81dadb/large-v3.pt --all-proxy=http://host.docker.internal:7890

我这是在容器里用代理,代理选项可去除

这是gpt4给我的代码:

我想写一个python程序,在我发出“过”的语音时,打印“过”(实际上是执行某种操作,我会将它嵌入到其他程序中,目前只打印字符串),在我发出“下一个”的语音时,打印“下一个”,我想使用https://huggingface.co/openai/whisper-large-v3实现

import whisper import sounddevice as sd import numpy as np # 录音设置 duration = 5 # 录音时长(秒) samplerate = 16000 # 采样率 def record_audio(duration, samplerate): """录制音频""" recording = sd.rec( int(duration * samplerate), samplerate=samplerate, channels=1, dtype="float32" ) sd.wait() return recording def transcribe_audio(audio, model): """使用Whisper模型转录音频""" audio = np.squeeze(audio) # 确保音频是一维的 result = model.transcribe(audio) return result["text"] def main(): # 加载Whisper模型 model = whisper.load_model("large-v3") while True: print("开始录音...") audio = record_audio(duration, samplerate) print("录音结束,正在识别...") # 识别语音 text = transcribe_audio(audio, model) # 根据识别结果执行操作 if "过" in text: print("过") elif "下一个" in text: print("下一个") else: print("未识别到指令") print(text) if __name__ == "__main__": main() 

whisperopenaiazurecodemediumgptpythondockerhuggingfaceproxynumpygpt4docurl
  • 本文作者:李琛
  • 本文链接: https://wapzz.net/post-2037.html
  • 版权声明:本博客所有文章除特别声明外,均默认采用 CC BY-NC-SA 4.0 许可协议。
本站部分内容来源于网络转载,仅供学习交流使用。如涉及版权问题,请及时联系我们,我们将第一时间处理。
文章很赞!支持一下吧 还没有人为TA充电
为TA充电
还没有人为TA充电
0
  • 支付宝打赏
    支付宝扫一扫
  • 微信打赏
    微信扫一扫
感谢支持
文章很赞!支持一下吧
关于作者
2.3W+
5
0
1
WAP站长官方

加速数字化与低碳化双转型,施耐德电气的创新力量如何发挥作用?

上一篇

一夜爆火!4人公司半年打造估值2亿的AI视频工具,撼动Runway地位

下一篇
  • 复制图片
按住ctrl可打开默认菜单