北大提出统一的视觉语言大模型Chat-UniVi 3天训练成果惊艳众人

北大提出统一的视觉语言大模型Chat-UniVi 3天训练成果惊艳众人

    正在检查是否收录...

近日,北京大学和中山大学等机构的研究者提出了一种名为Chat-UniVi的视觉语言大模型,实现了统一的视觉表征,使其能够同时处理图片和视频任务。这一框架的独特之处在于,它不仅在深度学习任务中表现卓越,而且仅需短短三天的训练时间,就能够训练出具有130亿参数的通用视觉语言大模型。

项目地址:https://github.com/PKU-YuanGroup/Chat-UniVi

Chat-UniVi的核心方法是采用动态视觉token,通过最近邻的密度峰聚类算法来获取这些动态token。这一方法极大地减少了视觉token的数量,降低了模型的训练和推理成本。研究人员通过实验证明,Chat-UniVi在图片理解、视频理解、问答等多个任务中都表现出色,甚至在较小的参数量下也能超越其他大型模型。

文章还详细介绍了Chat-UniVi的训练过程,分为多模态预训练和联合指令微调两个阶段。这一两阶段的训练策略使得模型能够在混合数据集上进行训练,无需对模型结构进行修改,展现了其在多任务学习上的灵活性和高效性。

Chat-UniVi的成功实验结果包括在图片理解、视频理解、问答等多个任务中都超越了先进的方法。而其在幻觉评估上的优越性更是引人注目,证明了采用动态视觉token和多尺度表征的有效性。

综合而言,Chat-UniVi的提出为视觉语言模型的研究领域带来了新的思路,通过统一的视觉表征实现了对多模态数据的高效处理,为深度学习模型的训练和推理提供了更加便捷和经济的解决方案。

chattoken视觉语言大模型深度学习多模态预训练引人注目研究者研究领域多任务多尺度大型模型研究人员语言模型多任务学习git视觉语言模型github解决方案数据集url
  • 本文作者:李琛
  • 本文链接: https://wapzz.net/post-1969.html
  • 版权声明:本博客所有文章除特别声明外,均默认采用 CC BY-NC-SA 4.0 许可协议。
本站部分内容来源于网络转载,仅供学习交流使用。如涉及版权问题,请及时联系我们,我们将第一时间处理。
文章很赞!支持一下吧 还没有人为TA充电
为TA充电
还没有人为TA充电
0
  • 支付宝打赏
    支付宝扫一扫
  • 微信打赏
    微信扫一扫
感谢支持
文章很赞!支持一下吧
关于作者
2.3W+
5
0
1
WAP站长官方

Adobe:当创意工作遇上AIGC ,人工智能还是取代了设计师?

上一篇

ChatGPT的Prompts关键词提示工程集合:包含AI绘画和GPT文本对话

下一篇
  • 复制图片
按住ctrl可打开默认菜单