腾讯披露最新大模型训练方法:Angel框架升级 效率提升2.6倍

腾讯披露最新大模型训练方法:Angel框架升级 效率提升2.6倍

    正在检查是否收录...

在当前大模型参数规模呈指数级增长的情况下,腾讯近日披露了混元大模型训练的最新方法,通过升级自研机器学习框架Angel,成功提升大模型训练效率。这一升级使得千亿级大模型训练可以节省高达50%的算力成本,为应对算力紧缺提供了有力支持。Angel框架的升级不仅仅在于提高效率,还支持单任务万卡级别超大规模训练,进一步提升了腾讯云HCC大模型专属算力集群的性能和效率。

图源备注:图片由AI生成,图片授权服务商Midjourney

为了进一步提高大模型的训练和推理效率,腾讯自研了机器学习训练框架AngelPTM。在存储方面,AngelPTM采用多维度的并行计算,包括数据并行、模型并行、流水并行和序列并行。

此外,通过在ZeRO-Cache的基础上引入统一视角技术,将显存和主存打通,有效扩展了显存容量,提升了单机存储容量达90%。在通讯方面,腾讯通过软硬件结合的方式解决,构建了3.2T RDMA网络来拓宽带宽,同时在框架软件层面做GPU拓扑感知,实现了负载均衡的流水并行。为了确保稳定性,腾讯对基础设施的网络、硬件、存储、云原生调度都进行了监控,并实施了自动续训和系统容错。

此外,为解决推理成本不断上升的问题,腾讯推出了大模型推理框架AngelHCF。通过扩展并行能力和关键能力的优化,包括Embedding共享、Attention算子优化、Paged Attention优化等方式,提高了推理性能,相较于主流框架,AngelHCF的推理速度提高了1.3倍。这一框架在腾讯混元大模型文生图的应用中,将推理耗时从原本的10秒缩短至3至4秒。

腾讯不仅仅在大模型训练方面取得了显著的效率提升,还在推理阶段取得了实质性的优化。这一系列技术提升已经在腾讯云上得以开放,为用户提供更优的训练和推理加速能力,同时支持客户一站式训练精调,打造专属智能应用。腾讯内部已有超过300项业务和应用场景接入腾讯混元大模型内测,涵盖了文本总结、摘要、创作、翻译、代码等多个领域,这标志着整个生产链路的全面升级,从模型研发到应用落地形成了一站式的平台,进一步推动了大模型应用的发展。

大模型模型训练混元大模型一站式机器学习midjourney模型推理学习框架机器学习框架大模型应用负载均衡基础设施云原生高效率稳定性文本总结gpu智能应用效率提升提高效率ai生成文生图url
  • 本文作者:李琛
  • 本文链接: https://wapzz.net/post-1722.html
  • 版权声明:本博客所有文章除特别声明外,均默认采用 CC BY-NC-SA 4.0 许可协议。
本站部分内容来源于网络转载,仅供学习交流使用。如涉及版权问题,请及时联系我们,我们将第一时间处理。
文章很赞!支持一下吧 还没有人为TA充电
为TA充电
还没有人为TA充电
0
  • 支付宝打赏
    支付宝扫一扫
  • 微信打赏
    微信扫一扫
感谢支持
文章很赞!支持一下吧
关于作者
2.3W+
5
0
1
WAP站长官方

〔002〕Stable Diffusion 之 简单汉化和双语汉化 篇

上一篇

网络规模、训练学习速度提升,清华团队在大规模光电智能计算方向取得进展

下一篇
  • 复制图片
按住ctrl可打开默认菜单