探索和构建 LLaMA 3 架构:深入探讨组件、编码和推理技术(一)

探索和构建 LLaMA 3 架构:深入探讨组件、编码和推理技术(一)

    正在检查是否收录...

探索和构建 LLaMA 3 架构:深入探讨组件、编码和推理技术(一)

Meta 通过推出新的开源 AI 模型 Llama 3 以及新版本的 Meta AI,正在加强其在人工智能 (AI) 竞赛中的竞争力。该虚拟助手由 Llama 3 提供支持,现已可在所有 Meta 平台上使用。

Llama 3 是什么?:Meta 推出了 Llama 3,这是其 Llama 系列开源 AI 模型中的最新版本。 Llama 3 有两种变体:一种具有 80 亿个参数,另一种具有 700 亿个参数。Meta 声称 Llama 3 在这些参数尺度上为大型语言模型设立了新标准。他们改进了训练前和训练后流程,从而降低了错误拒绝率、更好的对齐以及模型的更多样化的响应。值得注意的是,Llama 3 拥有增强的推理、代码生成和指令跟踪能力。


LLaMA 架构:

与前代模型之间的主要区别在于,预训练语料库的大小增加了 650% ,LLaMA 2 在 2T标记上进行训练,而 LLaMA 3 在 15T 标记上进行训练,模型的上下文长度从 4K 增加了一倍到 8K ,8B 和 70B 模型,并对 8B 和 70B 变体采用分组查询注意力,与上一代(GQA)相比,仅在更大的模型 34B 和 70B 中使用。最有影响力的部分是新的安全方法,包括安全和有用两种奖励模式。

Llama3 模型大小、架构、优化超参数


llama2 模型大小、架构、优化超参数

Llama1 参数

Llama架构

LLaMA 3 架构主要采用与 LLaMA 2 相同的架构,其中 GQA(分组查询注意)用于 8B 和 70B 模型,RoPE(旋转位置嵌入)用于 Q、K,因为 V 仅在应用 SoftMax 之前相乘函数,RMS(均方根误差)用于在 Self Attention 之前应用的归一化,前馈块,KV 缓存也与 LLMA 中使用的保持相同。注意:此模型架构仅专注于模型推理,而不是用于训练,因此具有交叉注意力的解码器块不会被覆盖,KV 缓存也不会用于模型的训练阶段。

大模型技术分享

llama注意力llama 2ai 模型人工智能llama2模型推理预训练解码器语料库上下文代码生成影响力虚拟助手大型语言模型llm语言模型大模型多样化
  • 本文作者:李琛
  • 本文链接: https://wapzz.net/post-17207.html
  • 版权声明:本博客所有文章除特别声明外,均默认采用 CC BY-NC-SA 4.0 许可协议。
本站部分内容来源于网络转载,仅供学习交流使用。如涉及版权问题,请及时联系我们,我们将第一时间处理。
文章很赞!支持一下吧 还没有人为TA充电
为TA充电
还没有人为TA充电
0
  • 支付宝打赏
    支付宝扫一扫
  • 微信打赏
    微信扫一扫
感谢支持
文章很赞!支持一下吧
关于作者
2.3W+
5
0
1
WAP站长官方

华为汪涛:2030年AI手机占比将达到90%

上一篇

挑战Midjourney,融合近百个SD大模型的通用模型AlbedoBase XL

下一篇
  • 复制图片
按住ctrl可打开默认菜单