Llama改进之——SwiGLU激活函数

Llama改进之——SwiGLU激活函数

    正在检查是否收录...

引言

今天介绍LLAMA模型引入的关于激活函数的改进——SwiGLU1,该激活函数取得了不错的效果,得到了广泛地应用。

SwiGLU是GLU的一种变体,其中包含了GLU和Swish激活函数。

GLU

GLU(Gated Linear Units,门控线性单元)2引入了两个不同的线性层,其中一个首先经过sigmoid函数,其结果将和另一个线性层的输出进行逐元素相乘作为最终的输出:
GLU ( x , W , V , b , c ) = σ ( x W + b ) ⊗ ( x V + c ) (1) \text{GLU}(x,W,V,b,c) = \sigma(xW+b) \otimes (xV+c) \tag 1 GLU(x,W,V,b,c)=σ(xW+b)⊗(xV+c)(1)
这里 W , V W,V W,V以及 b , c b,c b,c分别是这两个线性层的参数; σ ( x W + b ) \sigma(xW+b) σ(xW+b)作为门控,控制 x V + c xV+c xV+c的输出。

这里使用 σ \sigma σ作为激活函数,修改改激活函数得到的变体通常能带来更好的性能表现,比如SwiGLU修改激活函数为Swish。我们来看下Swish激活函数。

Swish

Swish3激活函数的形式为:
Swish β ( x ) = x σ ( β x ) (2) \text{Swish}_\beta(x) = x \sigma(\beta x) \tag 2 Swishβ​(x)=xσ(βx)(2)
其中 σ ( x ) \sigma(x) σ(x)是Sigmoid函数; β \beta β是一个可学习的参数。

可以通过下面的代码画出Swish激活函数在不同参数 β \beta β下的图像:

import numpy as np import matplotlib.pyplot as plt def swish(x, beta): return x / (1 + np.exp(-beta*x)) x = np.linspace(-10, 10, 100) betas = [0.1, 1.0, 10.0] plt.figure(figsize=(10, 6)) for beta in betas: y = swish(x, beta) plt.plot(x, y, label=f'beta={beta}') plt.legend() plt.title('Swish Activation Function') plt.xlabel('x') plt.ylabel('f(x)') plt.grid(True) plt.show() 

可以看到3,当 β \beta β趋近于 0 0 0时,Swish函数趋近于线性函数 y = x 2 y=x^2 y=x2;当 β \beta β趋近于无穷大时,Swish函数趋近于ReLU函数;当 β \beta β取值为 1 1 1时,Swish函数是光滑且非单调的,等价于参考4中介绍的SiLU。

Swish与ReLU之间最显著的区别是当 x < 0 x < 0 x<0时Swish的非单调“凸起”3。

SwiGLU

如前文所述,将公式(1)中GLU的激活函数改为Swish即变成了所谓的SwiGLU激活函数1:
SwiGLU ( x , W , V ) = Swish β ( x W ) ⊗ ( x V ) (3) \text{SwiGLU}(x,W,V) = \text{Swish}_\beta(xW) \otimes (xV) \tag{3} SwiGLU(x,W,V)=Swishβ​(xW)⊗(xV)(3)
这里省略了偏置项。

代码实现

参考LLaMA,全连接层使用带有SwiGLU激活函数的FFN(Position-wise Feed-Forward Network)的公式如下1:
FFN SwiGLU ( x , W , V , W 2 ) = ( Swish 1 ( x W ) ⊗ x V ) W 2 (4) \text{FFN}_{\text{SwiGLU}}(\pmb x,W,V,W_2) = (\text{Swish}_1(\pmb xW) \otimes \pmb xV)W_2 \tag 4 FFNSwiGLU​(x,W,V,W2​)=(Swish1​(xW)⊗xV)W2​(4)
这里的Swish函数可以被SiLU函数替代:
SiLU ( x ) = x σ ( x ) \text{SiLU}(\pmb x) = \pmb x \sigma(\pmb x) SiLU(x)=xσ(x)
即:
FFN SwiGLU ( x , W , V , W 2 ) = ( SiLU ( x W ) ⊗ x V ) W 2 (5) \text{FFN}_{\text{SwiGLU}}(\pmb x,W,V,W_2) = (\text{SiLU}(\pmb xW) \otimes \pmb xV)W_2 \tag 5 FFNSwiGLU​(x,W,V,W2​)=(SiLU(xW)⊗xV)W2​(5)

import torch from torch import nn import torch.nn.functional as F class FeedForward(nn.Module): def __init__(self, hidden_size: int, intermediate_size: int) -> None: super().__init__() self.w1 = nn.Linear(hidden_size, intermediate_size, bias=False) self.w2 = nn.Linear(intermediate_size, hidden_size, bias=False) self.w3 = nn.Linear(hidden_size, intermediate_size, bias=False) def forward(self, x: torch.Tensor) -> torch.Tensor: # x: (batch_size, seq_len, hidden_size) # w1(x) -> (batch_size, seq_len, intermediate_size) # w1(x) -> (batch_size, seq_len, intermediate_size) # w2(*) -> (batch_size, seq_len, hidden_size) return self.w2(F.silu(self.w1(x)) * self.w3(x)) 

这里w1,w2,w3分别对应公式(5)中的 W , W 2 , V W,W_2,V W,W2​,V。

注意维度,其中w1,w3x转换到维度intermediate_size,然后w2转换回hidden_size

参考

[论文翻译]GLU Variants Improve Transformer ↩︎ ↩︎ ↩︎

[论文笔记]Language Modeling with Gated Convolutional Networks ↩︎

[论文笔记]SEARCHING FOR ACTIVATION FUNCTIONS ↩︎ ↩︎ ↩︎

[论文笔记]GAUSSIAN ERROR LINEAR UNITS (GELUS) ↩︎

unitllamaivatransformernumpyxla
  • 本文作者:李琛
  • 本文链接: https://wapzz.net/post-16061.html
  • 版权声明:本博客所有文章除特别声明外,均默认采用 CC BY-NC-SA 4.0 许可协议。
本站部分内容来源于网络转载,仅供学习交流使用。如涉及版权问题,请及时联系我们,我们将第一时间处理。
文章很赞!支持一下吧 还没有人为TA充电
为TA充电
还没有人为TA充电
0
  • 支付宝打赏
    支付宝扫一扫
  • 微信打赏
    微信扫一扫
感谢支持
文章很赞!支持一下吧
关于作者
2.3W+
5
0
1
WAP站长官方

别再说国产大模型技术突破要靠 Llama 3 开源了

上一篇

[从0开始AIGC][Transformer相关]:算法的时间和空间复杂度

下一篇
  • 复制图片
按住ctrl可打开默认菜单