清华大学提出全新加速训练大模型方法SoT

清华大学提出全新加速训练大模型方法SoT

    正在检查是否收录...

近日,微软研究和清华大学的研究人员共同提出了一种名为“Skeleton-of-Thought(SoT)”的全新人工智能方法,旨在解决大型语言模型(LLMs)生成速度较慢的问题。

尽管像GPT-4和LLaMA等LLMs在技术领域产生了深远影响,但其处理速度的不足一直是一个制约因素,特别是在对延迟敏感的应用中,如聊天机器人、协同驾驶和工业控制器。SoT方法与传统的性能提升方法不同,它不对LLMs进行复杂的修改,而是将其视为黑匣子,并侧重于优化输出内容的组织结构。

项目地址:https://github.com/imagination-research/sot/

SoT引入了一个独特的两阶段过程,首先引导LLM构建答案的骨架,然后在第二阶段使LLM同时扩展骨架中的多个要点。这一方法不仅提高了LLMs的响应速度,还在不需要对模型架构进行复杂调整的情况下实现了这一目标。

为了评估SoT的有效性,研究团队对12个不同领域的模型进行了广泛测试,使用了Vicuna-80数据集,其中包含了来自编码、数学、写作和角色扮演等各个领域的问题。

通过使用FastChat和LLMZoo的度量标准,研究团队观察到SoT在八个模型上实现了1.13x到2.39x的速度提升,而且这些提升并没有牺牲答案质量。这表明SoT不仅可以显著提高响应速度,还能够在各种问题类别中保持或提升答案质量。

因此,SoT方法为解决LLMs速度较慢的问题提供了一种有前景的解决方案。研究团队的创新方法将LLMs视为黑匣子,并专注于数据级别的效率优化,为加速内容生成提供了新的视角。通过引导LLMs构建答案的骨架,然后进行并行扩展,SoT有效地提高了响应速度,为人工智能领域的动态思维过程开辟了新的探索方向,鼓励向更高效、更多才多艺的语言模型发展。

llmlmsllms人工智能语言模型性能提升生成速度研究人员gitllamachat解决方案github数据集大型语言模型角色扮演机器人内容生成gpt-4聊天机器人gpturl
  • 本文作者:李琛
  • 本文链接: https://wapzz.net/post-1447.html
  • 版权声明:本博客所有文章除特别声明外,均默认采用 CC BY-NC-SA 4.0 许可协议。
本站部分内容来源于网络转载,仅供学习交流使用。如涉及版权问题,请及时联系我们,我们将第一时间处理。
文章很赞!支持一下吧 还没有人为TA充电
为TA充电
还没有人为TA充电
0
  • 支付宝打赏
    支付宝扫一扫
  • 微信打赏
    微信扫一扫
感谢支持
文章很赞!支持一下吧
关于作者
2.3W+
5
0
1
WAP站长官方

Stable Diffusion教程

上一篇

AI绘画使用Stable Diffusion(SDXL)绘制玉雕风格的龙

下一篇
  • 复制图片
按住ctrl可打开默认菜单