Meta 发布新多token预测技术,使AI模型速度提升3倍

Meta 发布新多token预测技术,使AI模型速度提升3倍

    正在检查是否收录...

近期,Meta、Ecole des Ponts ParisTech 和 Université Paris-Saclay 的研究人员在一项研究中提出了一种改进 AI 大型语言模型(LLMs)准确性和速度的方法,即通过同时预测多个token。这与自回归语言模型的经典结构相悖,后者旨在一次预测一个token。

然而,多token预测并非适用于所有类型的模型和语言任务,但在某些领域中提供了重大优势,推理速度提升了3倍,并在生成任务上表现更佳。虽然仍有改进空间,但这项技术可能成为某些 LLM 应用的强大工具。

传统的训练 LLMs 的方法被称为 “下一个token预测”,这是一种自监督学习技术,模型被给定一个token序列,必须预测下一个token。然后将预测的token添加到输入中,重复这个过程,一次预测一个token。在大量文本语料上重复此过程,模型学习了允许它输出连贯文本段落的一般模式。

研究人员已经研究并记录了下一个token预测在获取语言、世界知识和推理能力方面的局限性。新研究的假设是 “训练语言模型同时预测多个未来token会导致更高的样本效率”。

多token预测指示 LLM 同时预测训练语料库中每个位置的多个来token。研究人员提出了一个简单的多token预测架构,不需要额外的训练时间或内存开销。

他们在多种任务上测试了新的多token预测方案,发现在小型模型上,多token预测导更差的结果,但随着模型规模的增加,它变得越来越有用。此外,多token预测还使模型在推理时间上提升了3倍,尤其在 “字节级标记化” 训练上,多字节预测大幅优于基线的单字节预测模型。多token预测仍有改进空间,研究人员正在考虑自动选择最佳预测token数量的技术,以及研究词汇量和多token预测之间的动态关系。

这项研究及其未来的改进对企业应用有用的地方在于,它有可能为生成任务提供更快的推理和更高的准性,几乎不需要额外的成本。同时,它保留了大部分 LLM 架构,可以与 Transformer 块的其他优化技术兼容。

tokenllm研究人员语言模型llms生成任务lms大型语言模型transformer预测模型准确性自监督学习语料库小型模型词汇量
  • 本文作者:李琛
  • 本文链接: https://wapzz.net/post-13602.html
  • 版权声明:本博客所有文章除特别声明外,均默认采用 CC BY-NC-SA 4.0 许可协议。
本站部分内容来源于网络转载,仅供学习交流使用。如涉及版权问题,请及时联系我们,我们将第一时间处理。
文章很赞!支持一下吧 还没有人为TA充电
为TA充电
还没有人为TA充电
0
  • 支付宝打赏
    支付宝扫一扫
  • 微信打赏
    微信扫一扫
感谢支持
文章很赞!支持一下吧
关于作者
2.3W+
5
0
1
WAP站长官方

云原生✖️ AI 时代的微服务架构最佳实践—— CloudWeGo 技术沙龙·上海站报名开启

上一篇

大数据和人工智能是如何合作的?

下一篇
  • 复制图片
按住ctrl可打开默认菜单