部署本地的大语言模型,只需几分钟!

部署本地的大语言模型,只需几分钟!

    正在检查是否收录...

2023 年是 AI 高速发展的一年,除了功能强大的商用大语言模型之外,也出现了很多不错的开源大语言模型。比如,Llama2、Codellama、Mistral 和 Vicuna 等。虽然商用的大语言模型 ChatGPT、Bard 和 Claude 功能很强大,但需要支付一定的费用,同时也存在一定的安全问题。对于某些场景,如果你要确保数据安全,那么你可以考虑部署本地大语言模型。

本文我将介绍如何利用 ollama[1] 这个开源项目,运行 Llama2 和其它的大语言模型。

安装 ollama

目前 ollama 只支持 macOS 和 Linux 系统,Windows 平台正在开发中。我们可以访问 Download Ollama[2] 这个链接下载指定平台的 ollama。

我下载的是 macOS 版本,成功下载后解压 「Ollama-darwin.zip」 文件,双击 Ollama 可执行文件,即可以开始安装。

安装时会提示是否把 Ollama 应用移动到系统的 Applications 目录,这里我选择 「Move to Applications」:

接着,按照软件安装指南一步步操作即可。

如果你想运行 llama2,只需在终端中运行 ollama run llama2 命令。运行该命令后,会自动下载 llama2 [3] 模型:

除了 llama2 模型之外,Ollama 还支持很多模型,完整的模型可以访问 模型列表[4] 查看。

注意:你应该至少有 8 GB 的 RAM 来运行 3B 模型,16 GB 的 RAM 来运行 7B 模型,32 GB 的 RAM 来运行 13B 模型。

成功下载完模型之后,你就可以跟 llama2 模型交互了:

ollama CLI

利用 ollama CLI,我们可以方便地对模型执行各种操作。比如,创建模型、拉取模型、移除模型或复制模型等。

创建模型

ollama create example -f Modelfile

拉取模型

ollama pull llama2

此命令还可用于更新本地模型。只会拉取差异的部分。

移除模型

ollama rm llama2

复制模型

ollama cp llama2 my-llama2

除了上述的命令之外,ollama CLI 还提供了其它的命令,通过 ollama --help 就可以查看完整的命令:

(base) ➜ ~ ollama --help Large language model runner Usage: ollama [command] Available Commands: serve Start ollama create Create a model from a Modelfile show Show information for a model run Run a model pull Pull a model from a registry push Push a model to a registry list List models cp Copy a model rm Remove a model help Help about any command Flags: -h, --help help for ollama -v, --version version for ollama

启动本地服务器

如果你不想在终端中与大语言模型交互,那么你可以通过 ollama serve 命令启动一个本地的服务器。成功运行该命令之后,你就可以通过 REST API 的形式跟本地的大语言模型交互:

curl http://localhost:11434/api/generate -d '{ "model": "llama2", "prompt":"Why is the sky blue?" }'

在实际项目中,我们可以利用 langchainjs[5] 封装的 ChatOllama[6] 对象来高效地与 Ollama 做交互。

ChatOllama

Ollama 还支持 JSON 模式,可以强制让大语言模型输出合法的 JSON。下面我们来介绍一下如何利用 langchainjs) 封装的 

「ChatOllama」

 对象实现文本翻译的功能。

初始化 ChatOllama 项目。

mkdir ChatOllama npm init -y

安装 langchainjs。

npm install -S langchain # or yarn add langchain # or pnpm add langchainjs

创建 index.mjs 文件。

import { ChatOllama } from "langchain/chat_models/ollama"; import { ChatPromptTemplate } from "langchain/prompts"; const prompt = ChatPromptTemplate.fromMessages([ [ "system", `You are an expert translator. Format all responses as JSON objects with two keys: "original" and "translated".`, ], ["human", `Translate "{input}" into {language}.`], ]); const model = new ChatOllama({ baseUrl: "http://localhost:11434", // Default value model: "llama2", // Default value format: "json", }); const chain = prompt.pipe(model); const result = await chain.invoke({ input: "I love programming", language: "Chinese", }); console.log(result);

之后,在项目的根目录下,打开终端并执行 node index.mjs 命令。当成功运行上述命令后,终端会输出以下结果:

除了实现文本翻译的功能之外,你还可以实现很多不同功能。比如,开发 RAG(Retrieval Augmented Generation)应用来实现高效地信息检索。感兴趣的小伙伴,可以自行了解 RAG 相关内容。

总结

本文介绍了如何利用 Ollama 在本地快速部署开源的大语言模型,并介绍了基于 langchainjs 封装的 ChatOllama 对象,实现文本翻译的功能。其实,Ollama 还支持我们自定义模型,它允许我们导入 GGUF 格式的模型。如果你对自定义模型感兴趣,可以阅读 Customize your own model[7] 这一部分的内容。

Reference

[1]ollama:https://github.com/jmorganca/ollama。

[2]Download Ollama:https://ollama.ai/download。

[3]llama2 :https://ollama.ai/library/llama2。

[4]模型列表:https://ollama.ai/library。

[5]langchainjs:https://github.com/langchain-ai/langchainjs。

[6]ChatOllama:https://js.langchain.com/docs/integrations/chat/ollama。

[7]Customize your own model:https://github.com/jmorganca/ollama?tab=readme-ov-file#customize-your-own-model。

llamallama2chatlangchain语言模型大语言模型promptjsonclicreategithub文本翻译gitragapp服务器urlganptt自定义模型
  • 本文作者:李琛
  • 本文链接: https://wapzz.net/post-13101.html
  • 版权声明:本博客所有文章除特别声明外,均默认采用 CC BY-NC-SA 4.0 许可协议。
本站部分内容来源于网络转载,仅供学习交流使用。如涉及版权问题,请及时联系我们,我们将第一时间处理。
文章很赞!支持一下吧 还没有人为TA充电
为TA充电
还没有人为TA充电
0
  • 支付宝打赏
    支付宝扫一扫
  • 微信打赏
    微信扫一扫
感谢支持
文章很赞!支持一下吧
关于作者
2.3W+
5
0
1
WAP站长官方

小米社区内测 AI 百宝箱功能 仅限小米 14 系列用户报名

上一篇

Stability AI宣布裁员20人,约占员工总数的10%

下一篇
  • 复制图片
按住ctrl可打开默认菜单