用户群组分析Cohort、RFM分层模型、KMeans用户聚类模型对比实战

用户群组分析Cohort、RFM分层模型、KMeans用户聚类模型对比实战

    正在检查是否收录...

本文转载自微信公众号「 尤而小屋」,作者尤而小屋 。转载本文请联系尤而小屋公众号。

大家好,我是Peter~

本文介绍用户群组分析Cohort analysis、RFM用户分层模型、Kmeans用户聚类模型的完整实施过程。

部分结果显示:

(1)群组分析-用户留存展示

图片

(2)RFM模型-用户分层

图片

(3)用户聚类-划分簇群

图片

图片

项目思维导图

提供项目的思维导图:

图片

1 导入库-mport libraries

导入的第三方包主要包含数据处理、可视化、文本处理和聚类模型Kmeans等

In [1]:

import pandas as pd import numpy as np import seaborn as sns sns.set_style("darkgrid") import matplotlib.pyplot as plt from mpl_toolkits import mplot3d import plotly_express as px import plotly.graph_objects as go from sklearn.cluster import KMeans # Kmeans聚类模型 from sklearn.metrics import silhouette_score # 聚类效果评价:轮廓系数 from sklearn.preprocessing import StandardScaler # 数据标准化 from wordcloud import WordCloud import jieba import nltk from nltk.corpus import stopwords from nltk.tokenize import word_tokenize nltk.download('stopwords') import string import warnings warnings.filterwarnings("ignore")

2 数据信息-Data information

2.1 读取数据-Read data

In [2]:

df = pd.read_excel("Online Retail.xlsx") df.head()

Out[2]:


InvoiceNo

StockCode

Description

Quantity

InvoiceDate

UnitPrice

CustomerID

Country

0

536365

85123A

WHITE HANGING HEART T-LIGHT HOLDER

6

2010-12-01 08:26:00

2.55

17850.0

United Kingdom

1

536365

71053

WHITE METAL LANTERN

6

2010-12-01 08:26:00

3.39

17850.0

United Kingdom

2

536365

84406B

CREAM CUPID HEARTS COAT HANGER

8

2010-12-01 08:26:00

2.75

17850.0

United Kingdom

3

536365

84029G

KNITTED UNION FLAG HOT WATER BOTTLE

6

2010-12-01 08:26:00

3.39

17850.0

United Kingdom

4

536365

84029E

RED WOOLLY HOTTIE WHITE HEART.

6

2010-12-01 08:26:00

3.39

17850.0

United Kingdom

2.2 数据基本信息-Data basic information

In [3]:

df.shape

Out[3]:

(541909, 8)

df.shape表示数据的行列数

In [4]:

df.dtypes # 每个字段的类型

Out[4]:

InvoiceNo object StockCode object Description object Quantity int64 InvoiceDate datetime64[ns] UnitPrice float64 CustomerID float64 Country object dtype: object

本次数据中主要包含字符型object、数值型float/int64、时间类型datetime64[ns]。

输出所有的列字段名称:

In [5]:

df.columns

Out[5]:

Index(['InvoiceNo', 'StockCode', 'Description', 'Quantity', 'InvoiceDate', 'UnitPrice', 'CustomerID', 'Country'], dtype='object')

In [6]:

df.info() # 字段名、非缺失值个数、字段类型 <class 'pandas.core.frame.DataFrame'> RangeIndex: 541909 entries, 0 to 541908 Data columns (total 8 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 InvoiceNo 541909 non-null object 1 StockCode 541909 non-null object 2 Description 540455 non-null object 3 Quantity 541909 non-null int64 4 InvoiceDate 541909 non-null datetime64[ns] 5 UnitPrice 541909 non-null float64 6 CustomerID 406829 non-null float64 7 Country 541909 non-null object dtypes: datetime64[ns](1), float64(2), int64(1), object(4) memory usage: 33.1+ MB

2.3 缺失值信息-Missing information

输出每个字段缺失的个数:

In [7]:

df.isnull().sum()

Out[7]:

InvoiceNo 0 StockCode 0 Description 1454 Quantity 0 InvoiceDate 0 UnitPrice 0 CustomerID 135080 Country 0 dtype: int64

输出每个字段缺失的比例:

In [8]:

df.isnull().sum() / len(df)

Out[8]:

InvoiceNo 0.000000 StockCode 0.000000 Description 0.002683 Quantity 0.000000 InvoiceDate 0.000000 UnitPrice 0.000000 CustomerID 0.249267 Country 0.000000 dtype: float64

可以看到CustomerID字段的缺失值比例高达24.96%;但是该字段本身对数据分析影响不大。

2.4 重复数据-Duplicated data

查看数据中的重复值:

In [9]:

df[df.duplicated() == True].head()

Out[9]:


InvoiceNo

StockCode

Description

Quantity

InvoiceDate

UnitPrice

CustomerID

Country

517

536409

21866

UNION JACK FLAG LUGGAGE TAG

1

2010-12-01 11:45:00

1.25

17908.0

United Kingdom

527

536409

22866

HAND WARMER SCOTTY DOG DESIGN

1

2010-12-01 11:45:00

2.10

17908.0

United Kingdom

537

536409

22900

SET 2 TEA TOWELS I LOVE LONDON

1

2010-12-01 11:45:00

2.95

17908.0

United Kingdom

539

536409

22111

SCOTTIE DOG HOT WATER BOTTLE

1

2010-12-01 11:45:00

4.95

17908.0

United Kingdom

555

536412

22327

ROUND SNACK BOXES SET OF 4 SKULLS

1

2010-12-01 11:49:00

2.95

17920.0

United Kingdom

In [10]:

df.duplicated().sum()

Out[10]:

5268

In [11]:

print(f"数据中总共的重复行数 {df.duplicated().sum()} 条") 数据中总共的重复行数 5268 条

我们直接取非重复的数据:

In [12]:

df.shape

Out[12]:

(541909, 8)

In [13]:

df = df[~df.duplicated()] df.shape

Out[13]:

(536641, 8)

验证删除的重复数据:

In [14]:

536641 + 5268

Out[14]:

541909

3 字段分析-Columns analysis

3.1 InvoiceNo

In [15]:

df["InvoiceNo"].dtype # 字符类型

Out[15]:

dtype('O')

In [16]:

df["InvoiceNo"].value_counts() # 取值的数量

Out[16]:

InvoiceNo 573585 1114 581219 749 581492 731 580729 721 558475 705 ... 570518 1 C550935 1 550937 1 550940 1 C558901 1 Name: count, Length: 25900, dtype: int64

如果是取消或者退货的订单,则会出现数量为负数,出现的以C开头的InvoiceNo则是退货或者取消订单的客户:

In [17]:

df[df["InvoiceNo"].str.startswith("C") == True].head(10) # 出现取消或退货的数据

Out[17]:


InvoiceNo

StockCode

Description

Quantity

InvoiceDate

UnitPrice

CustomerID

Country

141

C536379

D

Discount

-1

2010-12-01 09:41:00

27.50

14527.0

United Kingdom

154

C536383

35004C

SET OF 3 COLOURED FLYING DUCKS

-1

2010-12-01 09:49:00

4.65

15311.0

United Kingdom

235

C536391

22556

PLASTERS IN TIN CIRCUS PARADE

-12

2010-12-01 10:24:00

1.65

17548.0

United Kingdom

236

C536391

21984

PACK OF 12 PINK PAISLEY TISSUES

-24

2010-12-01 10:24:00

0.29

17548.0

United Kingdom

237

C536391

21983

PACK OF 12 BLUE PAISLEY TISSUES

-24

2010-12-01 10:24:00

0.29

17548.0

United Kingdom

238

C536391

21980

PACK OF 12 RED RETROSPOT TISSUES

-24

2010-12-01 10:24:00

0.29

17548.0

United Kingdom

239

C536391

21484

CHICK GREY HOT WATER BOTTLE

-12

2010-12-01 10:24:00

3.45

17548.0

United Kingdom

240

C536391

22557

PLASTERS IN TIN VINTAGE PAISLEY

-12

2010-12-01 10:24:00

1.65

17548.0

United Kingdom

241

C536391

22553

PLASTERS IN TIN SKULLS

-24

2010-12-01 10:24:00

1.65

17548.0

United Kingdom

939

C536506

22960

JAM MAKING SET WITH JARS

-6

2010-12-01 12:38:00

4.25

17897.0

United Kingdom

In [18]:

# 选择非C开头的用户 df = df[df["InvoiceNo"].str.startswith("C") != True] df.shape

Out[18]:

(527390, 8)

In [19]:

print(f"总共不同的InvoiceNo数量为: {df['InvoiceNo'].nunique()}") 总共不同的InvoiceNo数量为: 22064

3.2 StockCode

In [20]:

df["StockCode"].dtype # 字符类型

Out[20]:

dtype('O')

In [21]:

print(f"总共不同的StockCode数量为: {df['StockCode'].nunique()}") 总共不同的StockCode数量为: 4059

In [22]:

df["StockCode"].value_counts()

Out[22]:

StockCode 85123A 2259 85099B 2112 22423 2012 47566 1700 20725 1582 ... 22143 1 44242A 1 35644 1 90048 1 23843 1 Name: count, Length: 4059, dtype: int64

3.3 Description

In [23]:

df.columns

Out[23]:

Index(['InvoiceNo', 'StockCode', 'Description', 'Quantity', 'InvoiceDate', 'UnitPrice', 'CustomerID', 'Country'], dtype='object')

In [24]:

des_list = df["Description"].tolist() # 全部的Description列表 des_list[:5]

Out[24]:

['WHITE HANGING HEART T-LIGHT HOLDER', 'WHITE METAL LANTERN', 'CREAM CUPID HEARTS COAT HANGER', 'KNITTED UNION FLAG HOT WATER BOTTLE', 'RED WOOLLY HOTTIE WHITE HEART.']

In [25]:

des_list = [str(i) for i in des_list] # 评价中可能出现的数值强制转成字符串

In [26]:

text = " ".join(des_list) # 所有数据构成的文本信息 text[:500]

Out[26]:

"WHITE HANGING HEART T-LIGHT HOLDER WHITE METAL LANTERN CREAM CUPID HEARTS COAT HANGER KNITTED UNION FLAG HOT WATER BOTTLE RED WOOLLY HOTTIE WHITE HEART. SET 7 BABUSHKA NESTING BOXES GLASS STAR FROSTED T-LIGHT HOLDER HAND WARMER UNION JACK HAND WARMER RED POLKA DOT ASSORTED COLOUR BIRD ORNAMENT POPPY'S PLAYHOUSE BEDROOM POPPY'S PLAYHOUSE KITCHEN FELTCRAFT PRINCESS CHARLOTTE DOLL IVORY KNITTED MUG COSY BOX OF 6 ASSORTED COLOUR TEASPOONS BOX OF VINTAGE JIGSAW BLOCKS BOX OF VINTAGE ALPHABET BLOCK"

In [27]:

# 初始化NLTK的停用词集 nltk_stopwords = set(stopwords.words('english')) # 添加额外的停用词,比如标点符号 additional_stopwords = set(string.punctuation) # 合并停用词集 stopwords_set = nltk_stopwords.union(additional_stopwords) # 分词 words = word_tokenize(text) # 去除停用词 filtered_words = [word for word in words if word.lower() not in stopwords_set] # 将过滤后的单词连接成字符串,用空格分隔 filtered_text = ' '.join(filtered_words) # 创建词云对象 wordcloud = WordCloud(width=800, height=400, background_color='white', min_font_size=10).generate(filtered_text) # 显示词云图 plt.figure(figsize=(10, 5), facecolor=None) plt.imshow(wordcloud) plt.axis("off") plt.tight_layout(pad=0) plt.show()

3.4 Quantity

In [28]:

df["Quantity"].dtype # 数值类型

Out[28]:

dtype('int64')

数值类型的数据直接查看描述统计信息:

In [29]:

df["Quantity"].describe()

Out[29]:

count 527390.000000 mean 10.311272 std 160.367285 min -9600.000000 25% 1.000000 50% 3.000000 75% 11.000000 max 80995.000000 Name: Quantity, dtype: float64

从min值中查看到,数据出现了负值,可能是取消或者退货的用户:直接删除

In [30]:

sns.boxplot(df["Quantity"]) plt.show()

图片

同时70000以上的异常点,我们也直接删除:

In [31]:

df = df[(df["Quantity"] > 0) & (df["Quantity"] < 70000)] # 只要大于0且小于70000的部分 df.shape

Out[31]:

(526052, 8)

3.5 InvoiceDate

In [32]:

df.columns

Out[32]:

Index(['InvoiceNo', 'StockCode', 'Description', 'Quantity', 'InvoiceDate', 'UnitPrice', 'CustomerID', 'Country'], dtype='object')

In [33]:

df["InvoiceDate"].dtype # 时间类型数据

Out[33]:

dtype('<M8[ns]')

查看最早和最近的时间信息:

In [34]:

print("最早出现的时间:",df["InvoiceDate"].min()) # 最早时间 print("最近出现的时间:",df["InvoiceDate"].max()) # 最近时间 最早出现的时间: 2010-12-01 08:26:00 最近出现的时间: 2011-12-09 12:50:00

In [35]:

df["InvoiceDate"].value_counts()

Out[35]:

InvoiceDate 2011-10-31 14:41:00 1114 2011-12-08 09:28:00 749 2011-12-09 10:03:00 731 2011-12-05 17:24:00 721 2011-06-29 15:58:00 705 ... 2011-10-06 10:53:00 1 2011-01-07 14:44:00 1 2011-10-06 10:34:00 1 2011-05-27 16:23:00 1 2011-03-22 11:54:00 1 Name: count, Length: 19050, dtype: int64

可以看到出现最多的是2011-10-31的数据

3.6 UnitPrice

In [36]:

df["UnitPrice"].dtype # 浮点型

Out[36]:

dtype('float64')

In [37]:

df["UnitPrice"].describe()

Out[37]:

count 526052.000000 mean 3.871756 std 42.016640 min -11062.060000 25% 1.250000 50% 2.080000 75% 4.130000 max 13541.330000 Name: UnitPrice, dtype: float64

观察到数据中存在负值,考虑直接删除:

In [38]:

df = df[df["UnitPrice"] > 0] # 只要大于0的部分 df.shape

Out[38]:

(524876, 8)

3.7 Country

In [39]:

df["Country"].value_counts()[:20]

Out[39]:

Country United Kingdom 479983 Germany 9025 France 8392 EIRE 7879 Spain 2479 Netherlands 2359 Belgium 2031 Switzerland 1958 Portugal 1492 Australia 1181 Norway 1071 Italy 758 Channel Islands 747 Finland 685 Cyprus 603 Sweden 450 Unspecified 442 Austria 398 Denmark 380 Poland 330 Name: count, dtype: int64

In [40]:

# 转化成比例 df["Country"].value_counts(normalize=True)[:20]

Out[40]:

Country United Kingdom 0.914469 Germany 0.017195 France 0.015989 EIRE 0.015011 Spain 0.004723 Netherlands 0.004494 Belgium 0.003869 Switzerland 0.003730 Portugal 0.002843 Australia 0.002250 Norway 0.002040 Italy 0.001444 Channel Islands 0.001423 Finland 0.001305 Cyprus 0.001149 Sweden 0.000857 Unspecified 0.000842 Austria 0.000758 Denmark 0.000724 Poland 0.000629 Name: proportion, dtype: float64

可以看到91.44%的用户来自UK,所以直接将Country分为UK和Others

In [41]:

df["Country"] = df["Country"].apply(lambda x: "UK" if x == "United Kingdom" else "Others") df["Country"].value_counts()

Out[41]:

Country UK 479983 Others 44893 Name: count, dtype: int64

3.8 CustomerID

In [42]:

df.isnull().sum()

Out[42]:

InvoiceNo 0 StockCode 0 Description 0 Quantity 0 InvoiceDate 0 UnitPrice 0 CustomerID 132186 Country 0 dtype: int64

只有CustomerID中出现了缺失值,直接删除:

In [43]:

df = df[~df.CustomerID.isnull()] df.shape

Out[43]:

(392690, 8)

经过处理后的数据信息:

In [44]:

df.info() <class 'pandas.core.frame.DataFrame'> Index: 392690 entries, 0 to 541908 Data columns (total 8 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 InvoiceNo 392690 non-null object 1 StockCode 392690 non-null object 2 Description 392690 non-null object 3 Quantity 392690 non-null int64 4 InvoiceDate 392690 non-null datetime64[ns] 5 UnitPrice 392690 non-null float64 6 CustomerID 392690 non-null float64 7 Country 392690 non-null object dtypes: datetime64[ns](1), float64(2), int64(1), object(4) memory usage: 27.0+ MB

4 特征衍生-Feature derivation

In [45]:

# 总金额 df['Amount'] = df['Quantity']*df['UnitPrice']

In [46]:

# 时间特征 df['year'] = df['InvoiceDate'].dt.year # 年-月-日-小时-星期几 df['month'] = df['InvoiceDate'].dt.month df['day'] = df['InvoiceDate'].dt.day df['hour'] = df['InvoiceDate'].dt.hour df['day_of_week'] = df['InvoiceDate'].dt.dayofweek

In [47]:

df.columns

Out[47]:

Index(['InvoiceNo', 'StockCode', 'Description', 'Quantity', 'InvoiceDate', 'UnitPrice', 'CustomerID', 'Country', 'Amount', 'year', 'month', 'day', 'hour', 'day_of_week'], dtype='object')

5 探索性数据分析Exploratory Data Analysis(EDA)

5.1 InvoiceNo & Amount

In [48]:

df[df["Country"] == "UK"].groupby("Description")["InvoiceNo"].nunique().sort_values(ascending=False)

Out[48]:

Description WHITE HANGING HEART T-LIGHT HOLDER 1884 JUMBO BAG RED RETROSPOT 1447 REGENCY CAKESTAND 3 TIER 1410 ASSORTED COLOUR BIRD ORNAMENT 1300 PARTY BUNTING 1290 ... GLASS AND BEADS BRACELET IVORY 1 GIRLY PINK TOOL SET 1 BLUE/GREEN SHELL NECKLACE W PENDANT 1 WHITE ENAMEL FLOWER HAIR TIE 1 MIDNIGHT BLUE VINTAGE EARRINGS 1 Name: InvoiceNo, Length: 3843, dtype: int64

In [49]:

column = ['InvoiceNo','Amount'] # 设置图片大小 plt.figure(figsize=(15,5)) for i,j in enumerate(column): plt.subplot(1,2,i+1) # 绘制子图 # 基于Description分组统计InvoiceNo 或者 Amount下的唯一值个数,降序排列,取出前10个数据 # x-数值(唯一值数据的个数) y-index(具体名称) sns.barplot(x = df[df["Country"] == "UK"].groupby("Description")[j].nunique().sort_values(ascending=False).head(10).values, y = df[df["Country"] == "UK"].groupby("Description")[j].nunique().sort_values(ascending=False).head(10).index, color="blue" ) plt.ylabel("") # y轴label if i == 0: # x轴label和挑剔设置 plt.xlabel("Sum of quantity") plt.title("Top10 products purchased by customers in UK",size=12) else: plt.xlabel("Total Sales") plt.title("Top10 products with most sales in UK", size=12) plt.tight_layout() plt.show()

5.2 Country

In [50]:

Country =["Others","UK"] # 设置图片大小 plt.figure(figsize=(15,5)) for i,j in enumerate(Country): plt.subplot(1,2,i+1) # 绘制子图 # 基于Description分组统计UnitPrice的均值,降序排列,取出前10个数据 # x-数值(唯一值数据的个数) y-index(具体名称) sns.barplot(x = df[df["Country"] == j].groupby("Description")["UnitPrice"].mean().sort_values(ascending=False).head(10).values, y = df[df["Country"] == j].groupby("Description")["UnitPrice"].mean().sort_values(ascending=False).head(10).index, color="yellow" ) plt.ylabel("") # y轴label if i == 0: # x轴label和挑剔设置 plt.xlabel("Unit Price") plt.title("Top10 products outside UK",size=12) else: plt.xlabel("Unit Price") plt.title("Top10 products in UK", size=12) plt.tight_layout() plt.show()

图片

5.3 Quantity

In [51]:

# 4个统计值信息:偏度、峰度、均值、中位数 skewness = round(df.Quantity.skew(),2) kurtosis = round(df.Quantity.kurtosis(),2) mean = round(np.mean(df.Quantity),0) median = np.median(df.Quantity) skewness, kurtosis, mean, median

Out[51]:

(29.87, 1744.24, 13.0, 6.0)

绘制4个子图:

In [52]:

plt.figure(figsize=(10,7)) # 第一个图体现完整数据信息 plt.subplot(2,2,1) sns.boxplot(y=df.Quantity) plt.title('Boxplot\n Mean:{}\n Median:{}\n Skewness:{}\n Kurtosis:{}'.format(mean,median,skewness,kurtosis)) # 第二个图体现小于5000的信息 plt.subplot(2,2,2) sns.boxplot(y=df[df.Quantity<5000]['Quantity']) plt.title('Quantity<5000') # 第二个图体现小于200的信息 plt.subplot(2,2,3) sns.boxplot(y=df[df.Quantity<200]['Quantity']) plt.title('Quantity<200') # 第二个图体现小于50的信息 plt.subplot(2,2,4) sns.boxplot(y=df[df.Quantity<50]['Quantity']) plt.title('Quantity<50') plt.show()

图片

5.4 CustomerID & Amount

In [53]:

plt.figure(figsize=(15,5)) # 子图1 plt.subplot(1,2,1) # x-index(具体名称) y-和的大小排序,取前10 sns.barplot(x = df[df['Country']=='UK'].groupby('CustomerID')['Amount'].sum().sort_values(ascending=False).head(10).index, y = df[df['Country']=='UK'].groupby('CustomerID')['Amount'].sum().sort_values(ascending=False).head(10).values, color='green') plt.xlabel('Customer IDs') plt.ylabel('Sales') plt.xticks(rotatinotallow=45) plt.title('Top10 customers in terms of sales in UK',size=15) # 子图2 plt.subplot(1,2,2) # x-index(具体名称) y-唯一值的大小排序,取前10 sns.barplot(x = df[df['Country']=='UK'].groupby('CustomerID')['InvoiceNo'].nunique().sort_values(ascending=False).head(10).index, y = df[df['Country']=='UK'].groupby('CustomerID')['InvoiceNo'].nunique().sort_values(ascending=False).head(10).values, color='green') plt.xlabel('Customer IDs') plt.ylabel('Number of visits') plt.xticks(rotatinotallow=45) plt.title('Top10 customers in terms of frequency in UK',size=15) plt.show()

5.5 Amount by Year-Month

In [54]:

# 分组聚合统计 df[df["Country"] == "UK"].groupby(["year","month"])["Amount"].sum()

Out[54]:

year month 2010 12 496477.340 2011 1 363692.730 2 354618.200 3 465784.190 4 408733.111 5 550359.350 6 523775.590 7 484545.591 8 497194.910 9 794806.692 10 821220.130 11 975251.390 12 302912.220 Name: Amount, dtype: float64

总金额Amount在每年每月的变化趋势:

In [55]:

plt.figure(figsize=(12,5)) # 按照年月分组统计总额Amount df[df["Country"] == "UK"].groupby(["year","month"])["Amount"].sum().plot(kind="line", label="UK", color="red") df[df["Country"] == "Others"].groupby(["year","month"])["Amount"].sum().plot(kind="line", label="Others", color="blue") plt.xlabel("Year-Month", size=12) plt.ylabel("Total Sales", size=12) plt.title("Sales in each year-month",size=12) plt.legend(fnotallow=12) plt.show()

图片

5.6 Amount by Day of Month

In [56]:

plt.figure(figsize=(12,5)) # 按照day分组统计总额Amount df[df["Country"] == "UK"].groupby(["day"])["Amount"].sum().plot(kind="line", label="UK", color="red") df[df["Country"] == "Others"].groupby(["day"])["Amount"].sum().plot(kind="line", label="Others", color="blue") plt.xlabel("Day", size=12) plt.ylabel("Total Sales", size=12) plt.title("Sales on each day of a month",size=12) plt.legend(fnotallow=12) plt.show()

5.7 Amount by Hour

In [57]:

plt.figure(figsize=(12,5)) # 按照hour分组统计总额Amount df[df["Country"] == "UK"].groupby(["hour"])["Amount"].sum().plot(kind="line", label="UK", color="red") df[df["Country"] == "Others"].groupby(["hour"])["Amount"].sum().plot(kind="line", label="Others", color="blue") plt.xlabel("Hours", size=12) plt.ylabel("Total Sales", size=12) plt.title("Sales on each hour in a day",size=12) plt.legend(fnotallow=12) plt.show()

图片

可以看到高峰期在每天的12点。

6 群组分析Cohort Analysis

In [58]:

df_c = df.copy() # 副本 df_c = df_c.iloc[:,:9] df_c.head()

Out[58]:


InvoiceNo

StockCode

Description

Quantity

InvoiceDate

UnitPrice

CustomerID

Country

Amount

0

536365

85123A

WHITE HANGING HEART T-LIGHT HOLDER

6

2010-12-01 08:26:00

2.55

17850.0

UK

15.30

1

536365

71053

WHITE METAL LANTERN

6

2010-12-01 08:26:00

3.39

17850.0

UK

20.34

2

536365

84406B

CREAM CUPID HEARTS COAT HANGER

8

2010-12-01 08:26:00

2.75

17850.0

UK

22.00

3

536365

84029G

KNITTED UNION FLAG HOT WATER BOTTLE

6

2010-12-01 08:26:00

3.39

17850.0

UK

20.34

4

536365

84029E

RED WOOLLY HOTTIE WHITE HEART.

6

2010-12-01 08:26:00

3.39

17850.0

UK

20.34

6.1 标签生成-Create Labels

在进行群组分析的时候,通常需要以下几个关键信息:

  • InoiceMonth:客户每笔交易发生的年月
  • CohortMonth:客户第一笔交易的发生的年月
  • CohortPeriod:客户购买的生命周期,即客户每笔交易的时间与第一笔交易时间的间隔

1、用户每笔交易的发生时间InoiceMonth:

In [59]:

df_c["InvoiceMonth"] = df_c["InvoiceDate"].dt.strftime("%Y-%m") # 字符类型 df_c["InvoiceMonth"] = pd.to_datetime(df_c["InvoiceMonth"]) # 转成时间类型

2、每个用户的第一笔交易的发生时间CohortMonth:

In [60]:

df_c.columns

Out[60]:

Index(['InvoiceNo', 'StockCode', 'Description', 'Quantity', 'InvoiceDate', 'UnitPrice', 'CustomerID', 'Country', 'Amount', 'InvoiceMonth'], dtype='object')

In [61]:

# 基于客户分组,再取出InvoiceMonth的最小值 df_c["CohortMonth"] = df_c.groupby("CustomerID")["InvoiceMonth"].transform("min") df_c["CohortMonth"] = pd.to_datetime(df_c["CohortMonth"]) # 转成时间类型

In [62]:

df_c.info() <class 'pandas.core.frame.DataFrame'> Index: 392690 entries, 0 to 541908 Data columns (total 11 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 InvoiceNo 392690 non-null object 1 StockCode 392690 non-null object 2 Description 392690 non-null object 3 Quantity 392690 non-null int64 4 InvoiceDate 392690 non-null datetime64[ns] 5 UnitPrice 392690 non-null float64 6 CustomerID 392690 non-null float64 7 Country 392690 non-null object 8 Amount 392690 non-null float64 9 InvoiceMonth 392690 non-null datetime64[ns] 10 CohortMonth 392690 non-null datetime64[ns] dtypes: datetime64[ns](3), float64(3), int64(1), object(4) memory usage: 36.0+ MB

3、生成用户的购买生命周期CohortPeriod:

In [63]:

def diff(t1,t2): """ df1和df2的时间差:以月计算 """ return (t1.dt.year - t2.dt.year) * 12 + t1.dt.month - t2.dt.month

In [64]:

# t1:df_c[""InvoiceMonth] # t2:df_c[""CohortMonth] df_c["CohortPeriod"] = diff(df_c["InvoiceMonth"], df_c["CohortMonth"])

In [65]:

df_c.sample(3) # 随机选择3条数据

Out[65]:


InvoiceNo

StockCode

Description

Quantity

InvoiceDate

UnitPrice

CustomerID

Country

Amount

InvoiceMonth

CohortMonth

CohortPeriod

304617

563585

22694

WICKER STAR

2

2011-08-17 17:01:00

2.10

17070.0

UK

4.20

2011-08-01

2011-08-01

0

183274

552655

82486

WOOD S/3 CABINET ANT WHITE FINISH

1

2011-05-10 14:22:00

8.95

14587.0

UK

8.95

2011-05-01

2011-01-01

4

281380

561518

84828

JUNGLE POPSICLES ICE LOLLY MOULDS

12

2011-07-27 15:20:00

1.25

15261.0

UK

15.00

2011-07-01

2011-07-01

0

6.2 群组矩阵-Cohort Matrix

In [66]:

cohort_matrix = df_c.pivot_table( index="CohortMonth", columns="CohortPeriod", values="CustomerID", # 基于CustomerID的唯一值 aggfunc="nunique" ) cohort_matrix

Out[66]:

CohortPeriod

0

1

2

3

4

5

6

7

8

9

10

11

12

CohortMonth














2010-12-01

885.0

324.0

286.0

340.0

321.0

352.0

321.0

309.0

313.0

350.0

331.0

445.0

235.0

2011-01-01

416.0

92.0

111.0

96.0

134.0

120.0

103.0

101.0

125.0

136.0

152.0

49.0

NaN

2011-02-01

380.0

71.0

71.0

108.0

103.0

94.0

96.0

106.0

94.0

116.0

26.0

NaN

NaN

2011-03-01

452.0

68.0

114.0

90.0

101.0

76.0

121.0

104.0

126.0

39.0

NaN

NaN

NaN

2011-04-01

300.0

64.0

61.0

63.0

59.0

68.0

65.0

78.0

22.0

NaN

NaN

NaN

NaN

2011-05-01

284.0

54.0

49.0

49.0

59.0

66.0

75.0

26.0

NaN

NaN

NaN

NaN

NaN

2011-06-01

242.0

42.0

38.0

64.0

56.0

81.0

23.0

NaN

NaN

NaN

NaN

NaN

NaN

2011-07-01

188.0

34.0

39.0

42.0

51.0

21.0

NaN

NaN

NaN

NaN

NaN

NaN

NaN

2011-08-01

169.0

35.0

42.0

41.0

21.0

NaN

NaN

NaN

NaN

NaN

NaN

NaN

NaN

2011-09-01

299.0

70.0

90.0

34.0

NaN

NaN

NaN

NaN

NaN

NaN

NaN

NaN

NaN

2011-10-01

358.0

86.0

41.0

NaN

NaN

NaN

NaN

NaN

NaN

NaN

NaN

NaN

NaN

2011-11-01

323.0

36.0

NaN

NaN

NaN

NaN

NaN

NaN

NaN

NaN

NaN

NaN

NaN

2011-12-01

41.0

NaN

NaN

NaN

NaN

NaN

NaN

NaN

NaN

NaN

NaN

NaN

NaN

得到上面的群组矩阵,在每行数据中,CohortPeriod=0表示每个月出现了多少新客户;后面的表示每个月还剩余多少客户(留存人数)。

6.3 留存率矩阵Retention Rate Matrix

In [67]:

cohort_size = cohort_matrix.iloc[:, 0] cohort_size

Out[67]:

CohortMonth 2010-12-01 885.0 2011-01-01 416.0 2011-02-01 380.0 2011-03-01 452.0 2011-04-01 300.0 2011-05-01 284.0 2011-06-01 242.0 2011-07-01 188.0 2011-08-01 169.0 2011-09-01 299.0 2011-10-01 358.0 2011-11-01 323.0 2011-12-01 41.0 Name: 0, dtype: float64

用每个月的留存人数除以第一个月的人数,得到对应的留存率:

In [68]:

retention = cohort_matrix.divide(cohort_size, axis=0) retention

Out[68]:

CohortPeriod

0

1

2

3

4

5

6

7

8

9

10

11

12

CohortMonth














2010-12-01

1.0

0.366102

0.323164

0.384181

0.362712

0.397740

0.362712

0.349153

0.353672

0.395480

0.374011

0.502825

0.265537

2011-01-01

1.0

0.221154

0.266827

0.230769

0.322115

0.288462

0.247596

0.242788

0.300481

0.326923

0.365385

0.117788

NaN

2011-02-01

1.0

0.186842

0.186842

0.284211

0.271053

0.247368

0.252632

0.278947

0.247368

0.305263

0.068421

NaN

NaN

2011-03-01

1.0

0.150442

0.252212

0.199115

0.223451

0.168142

0.267699

0.230088

0.278761

0.086283

NaN

NaN

NaN

2011-04-01

1.0

0.213333

0.203333

0.210000

0.196667

0.226667

0.216667

0.260000

0.073333

NaN

NaN

NaN

NaN

2011-05-01

1.0

0.190141

0.172535

0.172535

0.207746

0.232394

0.264085

0.091549

NaN

NaN

NaN

NaN

NaN

2011-06-01

1.0

0.173554

0.157025

0.264463

0.231405

0.334711

0.095041

NaN

NaN

NaN

NaN

NaN

NaN

2011-07-01

1.0

0.180851

0.207447

0.223404

0.271277

0.111702

NaN

NaN

NaN

NaN

NaN

NaN

NaN

2011-08-01

1.0

0.207101

0.248521

0.242604

0.124260

NaN

NaN

NaN

NaN

NaN

NaN

NaN

NaN

2011-09-01

1.0

0.234114

0.301003

0.113712

NaN

NaN

NaN

NaN

NaN

NaN

NaN

NaN

NaN

2011-10-01

1.0

0.240223

0.114525

NaN

NaN

NaN

NaN

NaN

NaN

NaN

NaN

NaN

NaN

2011-11-01

1.0

0.111455

NaN

NaN

NaN

NaN

NaN

NaN

NaN

NaN

NaN

NaN

NaN

2011-12-01

1.0

NaN

NaN

NaN

NaN

NaN

NaN

NaN

NaN

NaN

NaN

NaN

NaN

In [69]:

retention.index = pd.to_datetime(retention.index).date retention.round(3) * 100 # 转换成百分比对应的大小

Out[69]:

CohortPeriod

0

1

2

3

4

5

6

7

8

9

10

11

12

2010-12-01

100.0

36.6

32.3

38.4

36.3

39.8

36.3

34.9

35.4

39.5

37.4

50.3

26.6

2011-01-01

100.0

22.1

26.7

23.1

32.2

28.8

24.8

24.3

30.0

32.7

36.5

11.8

NaN

2011-02-01

100.0

18.7

18.7

28.4

27.1

24.7

25.3

27.9

24.7

30.5

6.8

NaN

NaN

2011-03-01

100.0

15.0

25.2

19.9

22.3

16.8

26.8

23.0

27.9

8.6

NaN

NaN

NaN

2011-04-01

100.0

21.3

20.3

21.0

19.7

22.7

21.7

26.0

7.3

NaN

NaN

NaN

NaN

2011-05-01

100.0

19.0

17.3

17.3

20.8

23.2

26.4

9.2

NaN

NaN

NaN

NaN

NaN

2011-06-01

100.0

17.4

15.7

26.4

23.1

33.5

9.5

NaN

NaN

NaN

NaN

NaN

NaN

2011-07-01

100.0

18.1

20.7

22.3

27.1

11.2

NaN

NaN

NaN

NaN

NaN

NaN

NaN

2011-08-01

100.0

20.7

24.9

24.3

12.4

NaN

NaN

NaN

NaN

NaN

NaN

NaN

NaN

2011-09-01

100.0

23.4

30.1

11.4

NaN

NaN

NaN

NaN

NaN

NaN

NaN

NaN

NaN

2011-10-01

100.0

24.0

11.5

NaN

NaN

NaN

NaN

NaN

NaN

NaN

NaN

NaN

NaN

2011-11-01

100.0

11.1

NaN

NaN

NaN

NaN

NaN

NaN

NaN

NaN

NaN

NaN

NaN

2011-12-01

100.0

NaN

NaN

NaN

NaN

NaN

NaN

NaN

NaN

NaN

NaN

NaN

NaN

6.4 留存热力图Retention Rate Heatmap

基于上面的留存率矩阵绘制热力图:

In [70]:

plt.figure(figsize=(15,8)) sns.heatmap(data=retention, annot=True, fmt=".0%", cmap="BuGn" # Blues,BuGn,GnBu,GnBu,PuRd,coolwarm,summer_r ) plt.title("Retention Rates over one year period", size=15) plt.show()

图片

6.5 金额群组分析-Cohort Analysis of Amount

下面是基于总金额平均值的留存:

In [71]:

cohort_amount = df_c.pivot_table( index="CohortMonth", columns="CohortPeriod", values="Amount", # 基于Amount的均值mean aggfunc="mean").round(2) # 保留两位小数 cohort_amount

Out[71]:

CohortPeriod

0

1

2

3

4

5

6

7

8

9

10

11

12

CohortMonth














2010-12-01

22.22

27.27

26.86

27.19

21.19

28.14

28.34

27.43

29.25

33.47

33.99

23.64

25.84

2011-01-01

19.79

25.10

20.97

31.23

22.48

26.28

25.24

25.49

19.07

22.33

19.73

19.78

NaN

2011-02-01

17.87

20.85

21.46

19.36

17.69

16.98

22.17

22.90

18.79

22.18

23.50

NaN

NaN

2011-03-01

17.59

21.14

22.69

18.02

21.11

19.00

22.03

19.99

16.81

13.20

NaN

NaN

NaN

2011-04-01

16.95

21.03

19.49

18.74

19.55

15.00

15.25

15.97

12.34

NaN

NaN

NaN

NaN

2011-05-01

20.48

17.34

22.25

20.90

18.59

14.12

17.02

14.04

NaN

NaN

NaN

NaN

NaN

2011-06-01

23.98

16.29

19.95

20.45

15.35

16.71

13.22

NaN

NaN

NaN

NaN

NaN

NaN

2011-07-01

14.96

23.53

11.79

13.02

10.88

11.68

NaN

NaN

NaN

NaN

NaN

NaN

NaN

2011-08-01

16.52

13.16

12.53

15.88

17.00

NaN

NaN

NaN

NaN

NaN

NaN

NaN

NaN

2011-09-01

18.81

12.29

14.15

14.27

NaN

NaN

NaN

NaN

NaN

NaN

NaN

NaN

NaN

2011-10-01

15.08

11.34

14.46

NaN

NaN

NaN

NaN

NaN

NaN

NaN

NaN

NaN

NaN

2011-11-01

12.49

13.84

NaN

NaN

NaN

NaN

NaN

NaN

NaN

NaN

NaN

NaN

NaN

2011-12-01

28.10

NaN

NaN

NaN

NaN

NaN

NaN

NaN

NaN

NaN

NaN

NaN

NaN

In [72]:

cohort_amount.index = pd.to_datetime(cohort_amount.index).date # 索引的改变 cohort_amount

Out[72]:

CohortPeriod

0

1

2

3

4

5

6

7

8

9

10

11

12

2010-12-01

22.22

27.27

26.86

27.19

21.19

28.14

28.34

27.43

29.25

33.47

33.99

23.64

25.84

2011-01-01

19.79

25.10

20.97

31.23

22.48

26.28

25.24

25.49

19.07

22.33

19.73

19.78

NaN

2011-02-01

17.87

20.85

21.46

19.36

17.69

16.98

22.17

22.90

18.79

22.18

23.50

NaN

NaN

2011-03-01

17.59

21.14

22.69

18.02

21.11

19.00

22.03

19.99

16.81

13.20

NaN

NaN

NaN

2011-04-01

16.95

21.03

19.49

18.74

19.55

15.00

15.25

15.97

12.34

NaN

NaN

NaN

NaN

2011-05-01

20.48

17.34

22.25

20.90

18.59

14.12

17.02

14.04

NaN

NaN

NaN

NaN

NaN

2011-06-01

23.98

16.29

19.95

20.45

15.35

16.71

13.22

NaN

NaN

NaN

NaN

NaN

NaN

2011-07-01

14.96

23.53

11.79

13.02

10.88

11.68

NaN

NaN

NaN

NaN

NaN

NaN

NaN

2011-08-01

16.52

13.16

12.53

15.88

17.00

NaN

NaN

NaN

NaN

NaN

NaN

NaN

NaN

2011-09-01

18.81

12.29

14.15

14.27

NaN

NaN

NaN

NaN

NaN

NaN

NaN

NaN

NaN

2011-10-01

15.08

11.34

14.46

NaN

NaN

NaN

NaN

NaN

NaN

NaN

NaN

NaN

NaN

2011-11-01

12.49

13.84

NaN

NaN

NaN

NaN

NaN

NaN

NaN

NaN

NaN

NaN

NaN

2011-12-01

28.10

NaN

NaN

NaN

NaN

NaN

NaN

NaN

NaN

NaN

NaN

NaN

NaN

基于上述结果的热力图展示:

In [73]:

plt.figure(figsize=(15,8)) sns.heatmap(data=cohort_amount,annot=True,cmap="summer_r") plt.title("Average Spening over Time", size=15) plt.show()

图片

7 RFM model

7.1 RFM解释-Explanation

  • Recency(近度):指自客户最后一次与品牌进行活动或交易以来已经过去的时间
  • Frequency(频度):指在一定时期内,客户与品牌进行交易或互动的频率
  • Monetary(金额):也称为“货币价值”,这个因素反映了客户在一定时期内与品牌交易的总金额

In [74]:

df_rfm = df.copy() df_rfm = df_rfm.iloc[:,:9] df_rfm.head()

Out[74]:


InvoiceNo

StockCode

Description

Quantity

InvoiceDate

UnitPrice

CustomerID

Country

Amount

0

536365

85123A

WHITE HANGING HEART T-LIGHT HOLDER

6

2010-12-01 08:26:00

2.55

17850.0

UK

15.30

1

536365

71053

WHITE METAL LANTERN

6

2010-12-01 08:26:00

3.39

17850.0

UK

20.34

2

536365

84406B

CREAM CUPID HEARTS COAT HANGER

8

2010-12-01 08:26:00

2.75

17850.0

UK

22.00

3

536365

84029G

KNITTED UNION FLAG HOT WATER BOTTLE

6

2010-12-01 08:26:00

3.39

17850.0

UK

20.34

4

536365

84029E

RED WOOLLY HOTTIE WHITE HEART.

6

2010-12-01 08:26:00

3.39

17850.0

UK

20.34

7.2 Calculate R

In [75]:

# 每个ID下日期的最大值,也就是最近的一次消费时间 R = df_rfm.groupby("CustomerID")["InvoiceDate"].max().reset_index() R.head()

Out[75]:


CustomerID

InvoiceDate

0

12347.0

2011-12-07 15:52:00

1

12348.0

2011-09-25 13:13:00

2

12349.0

2011-11-21 09:51:00

3

12350.0

2011-02-02 16:01:00

4

12352.0

2011-11-03 14:37:00

In [76]:

R['InvoiceDate'] = pd.to_datetime(R['InvoiceDate']).dt.date # 取出年月日 R["MaxDate"] = R["InvoiceDate"].max() # 找出数据中的最大时间点

In [77]:

R["MaxDate"] = pd.to_datetime(R["MaxDate"]) # 转成时间类型数据 R["InvoiceDate"] = pd.to_datetime(R["InvoiceDate"])

In [78]:

R["Recency"] = (R["MaxDate"] - R["InvoiceDate"]).dt.days + 1 R.head()

Out[78]:


CustomerID

InvoiceDate

MaxDate

Recency

0

12347.0

2011-12-07

2011-12-09

3

1

12348.0

2011-09-25

2011-12-09

76

2

12349.0

2011-11-21

2011-12-09

19

3

12350.0

2011-02-02

2011-12-09

311

4

12352.0

2011-11-03

2011-12-09

37

In [79]:

R = R[['CustomerID','Recency']] R.columns = ['CustomerID','R']

7.3 Calculate F

计算购买频次

In [80]:

F = df_rfm.groupby('CustomerID')['InvoiceNo'].nunique().reset_index() F.head()

Out[80]:


CustomerID

InvoiceNo

0

12347.0

7

1

12348.0

4

2

12349.0

1

3

12350.0

1

4

12352.0

8

In [81]:

F.columns = ['CustomerID','F']

7.4 Calculate M

计算每个客户的总金额

In [82]:

M = df_rfm.groupby('CustomerID')['Amount'].sum().reset_index()

In [83]:

M.columns = ['CustomerID','M']

7.5 合并数据1-Merge Data

In [84]:

RFM = pd.merge(pd.merge(R,F),M) RFM.head()

Out[84]:


CustomerID

R

F

M

0

12347.0

3

7

4310.00

1

12348.0

76

4

1797.24

2

12349.0

19

1

1757.55

3

12350.0

311

1

334.40

4

12352.0

37

8

2506.04

7.6 Speed of Visit

在RFM模型中添加一个新指标:访问速度-Speed of Visit,用来表示用户平均回访时间,告诉我们客户平均多少天会再次光顾。

以客户17850为例,如何求出该客户的回访速度:

In [85]:

# 某位用户(17850)在不同Date下的访问次数统计count df_17850 = df_rfm[df_rfm["CustomerID"] == 17850].groupby("InvoiceDate")["InvoiceNo"].count().reset_index() df_17850.head()

Out[85]:


InvoiceDate

InvoiceNo

0

2010-12-01 08:26:00

7

1

2010-12-01 08:28:00

2

2

2010-12-01 09:01:00

2

3

2010-12-01 09:02:00

16

4

2010-12-01 09:32:00

16

将访问日期InvoiceDate一个单位后,再对两个日期做差值,最后对全部的差值求出均值,作为最终的平均回访天数:

In [86]:

df_17850["InvoiceDate1"] = df_17850["InvoiceDate"].shift(1) # 移动一个单位 df_17850["Diff"] = (df_17850["InvoiceDate"] - df_17850["InvoiceDate"]).dt.days # 两次相邻日期的间隔天数 df_17850.head()

Out[86]:


InvoiceDate

InvoiceNo

InvoiceDate1

Diff

0

2010-12-01 08:26:00

7

NaT

0

1

2010-12-01 08:28:00

2

2010-12-01 08:26:00

0

2

2010-12-01 09:01:00

2

2010-12-01 08:28:00

0

3

2010-12-01 09:02:00

16

2010-12-01 09:01:00

0

4

2010-12-01 09:32:00

16

2010-12-01 09:02:00

0

该用户的平均回访天数:

In [87]:

mean_days_17850 = round(df_17850.Diff.mean(),0) # 平均天数 mean_days_17850

Out[87]:

0.0

全部用户的处理:

In [88]:

customer_list = list(df_rfm.CustomerID.unique()) customers = [] values = [] for c in customer_list: sov = df_rfm[df_rfm["CustomerID"] == c].groupby("InvoiceDate")["InvoiceNo"].count().reset_index() if sov.shape[0] > 1: # 不同天数的记录数必须大于1 sov["InvoiceDate1"] = sov["InvoiceDate"].shift(1) # 移动一个单位 sov["Diff"] = (sov["InvoiceDate"] - sov["InvoiceDate1"]).dt.days mean_day = round(sov["Diff"].mean(), 0) # 存放用户名和对应的回访天数 customers.append(c) values.append(mean_day) else: customers.append(c) values.append(0)

在这里求出了每个用户的平均回访间隔时间:

In [89]:

speed_of_visit = pd.DataFrame({"CustomerID":customers, "Speed_of_Visit":values}) speed_of_visit = speed_of_visit.sort_values("CustomerID")

7.7 合并数据2

将新指标speed_of_visit添加到RFM模型的结果中:

In [90]:

RFM = pd.merge(RFM, speed_of_visit) RFM.head()

Out[90]:


CustomerID

R

F

M

Speed_of_Visit

0

12347.0

3

7

4310.00

60.0

1

12348.0

76

4

1797.24

94.0

2

12349.0

19

1

1757.55

0.0

3

12350.0

311

1

334.40

0.0

4

12352.0

37

8

2506.04

37.0

完整RFM模型的数据信息:

In [91]:

RFM.describe(percentiles=[0.25,0.5,0.75,0.9,0.95,0.99])

Out[91]:


CustomerID

R

F

M

Speed_of_Visit

count

4337.000000

4337.000000

4337.000000

4337.000000

4337.000000

mean

15301.089232

93.053032

4.272539

1992.519182

47.305741

std

1721.422291

99.966159

7.698808

8547.583474

63.041837

min

12347.000000

1.000000

1.000000

2.900000

0.000000

25%

13814.000000

18.000000

1.000000

306.450000

0.000000

50%

15300.000000

51.000000

2.000000

668.430000

28.000000

75%

16779.000000

143.000000

5.000000

1657.280000

68.000000

90%

17687.600000

263.000000

9.000000

3638.770000

123.000000

95%

17984.200000

312.000000

13.000000

5742.946000

176.000000

99%

18225.640000

369.640000

30.000000

18804.146000

305.640000

max

18287.000000

374.000000

209.000000

280206.020000

365.000000

7.8 指标分箱-Binning

7.8.1 分箱过程process of Binning

In [92]:

# bins根据min-25%-50%-75%-90%-max来确定,注意边界值 RFM["R_score"] = pd.cut(RFM["R"], bins=[0,18,51,143,263,375],labels=[5,4,3,2,1]) RFM["R_score"] = RFM["R_score"].astype("int") RFM["R_score"]

Out[92]:

0 5 1 3 2 4 3 1 4 4 .. 4332 1 4333 2 4334 5 4335 5 4336 4 Name: R_score, Length: 4337, dtype: int32

In [93]:

RFM["F_score"] = pd.cut(RFM["F"], bins=[0,1,2,5,9,210],labels=[1,2,3,4,5]) # 根据min-25%-50%-75%-90%-max来确定,注意边界值 RFM["F_score"] = RFM["F_score"].astype("int")

In [94]:

RFM["M_score"] = pd.cut(RFM["M"], bins=[2,307,669,1658,3639,290000],labels=[1,2,3,4,5]) # 根据min-25%-50%-75%-90%-max来确定,注意边界值 RFM["M_score"] = RFM["M_score"].astype("int")

In [95]:

RFM.info() <class 'pandas.core.frame.DataFrame'> RangeIndex: 4337 entries, 0 to 4336 Data columns (total 8 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 CustomerID 4337 non-null float64 1 R 4337 non-null int64 2 F 4337 non-null int64 3 M 4337 non-null float64 4 Speed_of_Visit 4337 non-null float64 5 R_score 4337 non-null int32 6 F_score 4337 non-null int32 7 M_score 4337 non-null int32 dtypes: float64(3), int32(3), int64(2) memory usage: 220.4 KB

根据三个指标的得分计算总分数:

7.8.2 总得分-Total score

In [96]:

# 总得分 RFM["score"] = RFM["R_score"] + RFM["F_score"] + RFM["M_score"] RFM.head()

Out[96]:


CustomerID

R

F

M

Speed_of_Visit

R_score

F_score

M_score

score

0

12347.0

3

7

4310.00

60.0

5

4

5

14

1

12348.0

76

4

1797.24

94.0

3

3

4

10

2

12349.0

19

1

1757.55

0.0

4

1

4

9

3

12350.0

311

1

334.40

0.0

1

1

2

4

4

12352.0

37

8

2506.04

37.0

4

4

4

12

In [97]:

RFM["score"].describe(percentiles=[0.25,0.5,0.75,0.9,0.95,0.99])

Out[97]:

count 4337.000000 mean 8.415495 std 3.312982 min 3.000000 25% 6.000000 50% 8.000000 75% 11.000000 90% 13.000000 95% 15.000000 99% 15.000000 max 15.000000 Name: score, dtype: float64

7.8.3 分箱结果-Result of binning

In [98]:

RFM["customer_type"] = pd.cut(RFM["score"], # 待分箱的数据 bins=[0,6,8,11,13,16], # 箱体边界值 labels=["Bad","Bronze","Silver","Gold","Platinum"] # 每个箱体的取值名称,字符串或者数值型皆可 ) RFM.head()

Out[98]:


CustomerID

R

F

M

Speed_of_Visit

R_score

F_score

M_score

score

customer_type

0

12347.0

3

7

4310.00

60.0

5

4

5

14

Platinum

1

12348.0

76

4

1797.24

94.0

3

3

4

10

Silver

2

12349.0

19

1

1757.55

0.0

4

1

4

9

Silver

3

12350.0

311

1

334.40

0.0

1

1

2

4

Bad

4

12352.0

37

8

2506.04

37.0

4

4

4

12

Gold

不同等级用户的人数统计对比:

In [99]:

RFM["customer_type"].value_counts(normalize=True)

Out[99]:

customer_type Bad 0.331566 Silver 0.276920 Bronze 0.198755 Gold 0.104450 Platinum 0.088310 Name: proportion, dtype: float64

7.8.4 不同类型用户数-Count of customer_type

In [100]:

RFM.groupby("customer_type")[["R","F","M"]].mean().round(0)

Out[100]:


R

F

M

customer_type




Bad

188.0

1.0

294.0

Bronze

78.0

2.0

622.0

Silver

44.0

4.0

1413.0

Gold

20.0

7.0

2932.0

Platinum

10.0

19.0

12159.0

可视化的效果:

In [101]:

columns = ["R","F","M"] plt.figure(figsize=(15,4)) for i, j in enumerate(columns): plt.subplot(1,3,i+1) RFM.groupby("customer_type")[j].mean().round(0).plot(kind="bar", color="blue") plt.title(f"{j} of each customer type", size=12) plt.xlabel("") plt.xticks(rotatinotallow=45) plt.show()

图片

8 聚类K-Means Clustering

In [102]:

df_kmeans = RFM.copy() df_kmeans = df_kmeans.iloc[:,:4] df_kmeans.head()

Out[102]:


CustomerID

R

F

M

0

12347.0

3

7

4310.00

1

12348.0

76

4

1797.24

2

12349.0

19

1

1757.55

3

12350.0

311

1

334.40

4

12352.0

37

8

2506.04

8.1 两两关系-Relations of two variables

In [103]:

plt.figure(figsize=(15,5)) plt.subplot(1,3,1) plt.scatter(df_kmeans.R, df_kmeans.F, color='blue', alpha=0.3) plt.title('R vs F', size=15) plt.subplot(1,3,2) plt.scatter(df_kmeans.M, df_kmeans.F, color='blue', alpha=0.3) plt.title('M vs F', size=15) plt.subplot(1,3,3) plt.scatter(df_kmeans.R, df_kmeans.F, color='blue', alpha=0.3) plt.title('R vs M', size=15) plt.show()

8.2 变量分布-Distribution of variables

In [104]:

columns = ["R","F","M"] plt.figure(figsize=(15,5)) for i, j in enumerate(columns): plt.subplot(1,3,i+1) sns.boxplot(df_kmeans[j], color="skyblue") plt.xlabel('') plt.title(f"Distribution of {j}",size=12) plt.show()

图片

8.3 异常值处理-Outliers Dealing

以四分之一分位数和四分之三分位数为边界值进行删除:

In [105]:

Q1 = df_kmeans.R.quantile(0.05) Q3 = df_kmeans.R.quantile(0.95) IQR = Q3 - Q1 df_kmeans = df_kmeans[(df_kmeans.R >= Q1 - 1.5 * IQR) & (df_kmeans.R <= Q3 + 1.5 * IQR)]

In [106]:

Q1 = df_kmeans.F.quantile(0.05) Q3 = df_kmeans.F.quantile(0.95) IQR = Q3 - Q1 df_kmeans = df_kmeans[(df_kmeans.F >= Q1 - 1.5 * IQR) & (df_kmeans.F <= Q3 + 1.5 * IQR)]

In [107]:

Q1 = df_kmeans.M.quantile(0.05) Q3 = df_kmeans.M.quantile(0.95) IQR = Q3 - Q1 df_kmeans = df_kmeans[(df_kmeans.M >= Q1 - 1.5 * IQR) & (df_kmeans.M <= Q3 + 1.5 * IQR)]

In [108]:

df_kmeans = df_kmeans.reset_index(drop=True) df_kmeans.info() <class 'pandas.core.frame.DataFrame'> RangeIndex: 4254 entries, 0 to 4253 Data columns (total 4 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 CustomerID 4254 non-null float64 1 R 4254 non-null int64 2 F 4254 non-null int64 3 M 4254 non-null float64 dtypes: float64(2), int64(2) memory usage: 133.1 KB

8.4 数据标准化-StandardScaler

In [109]:

df_kmeans = df_kmeans.iloc[:,1:] df_kmeans.head()

Out[109]:


R

F

M

0

3

7

4310.00

1

76

4

1797.24

2

19

1

1757.55

3

311

1

334.40

4

37

8

2506.04

In [110]:

ss = StandardScaler() df_kmeans_ss = ss.fit_transform(df_kmeans)

In [111]:

df_kmeans_ss = pd.DataFrame(df_kmeans_ss) df_kmeans_ss.columns = ['R','F','M'] df_kmeans_ss.head()

Out[111]:


R

F

M

0

-0.914184

0.882831

1.755148

1

-0.185002

0.100802

0.293115

2

-0.754363

-0.681227

0.270022

3

2.162366

-0.681227

-0.558029

4

-0.574565

1.143507

0.705526

8.5 确定K值-K-Eblow

In [112]:

from yellowbrick.cluster import KElbowVisualizer km = KMeans(init="k-means++", random_state=0, n_init="auto") visualizer = KElbowVisualizer(km, k=(2,10)) visualizer.fit(df_kmeans_ss) # df_kmeans_ss使用数据 visualizer.show()

图片

从结果中发现,k=4是最合适的。

8.6 聚类过程-Clustering

In [113]:

model_clus4 = KMeans(n_clusters = 4) model_clus4.fit(df_kmeans_ss)

Out[113]:

KMeans

KMeans(n_clusters=4)

In [114]:

cluster_labels = model_clus4.labels_ cluster_labels

Out[114]:

array([3, 0, 0, ..., 0, 3, 0])

8.7 聚类结果-Result of clustering

In [115]:

df_kmeans["clusters"] = model_clus4.labels_ # 贴上每行数据的标签 df_kmeans.head()

Out[115]:


R

F

M

clusters

0

3

7

4310.00

3

1

76

4

1797.24

0

2

19

1

1757.55

0

3

311

1

334.40

2

4

37

8

2506.04

3

In [116]:

df_kmeans.groupby('clusters').mean().round(0) # 每个簇群3个指标的均值

Out[116]:


R

F

M

clusters




0

53.0

2.0

650.0

1

20.0

15.0

6805.0

2

254.0

1.0

429.0

3

31.0

7.0

2567.0

8.8 轮廓系数-Silhoutte_score

In [117]:

from sklearn.metrics import silhouette_score # 聚类效果评价:轮廓系数 silhouette = silhouette_score(df_kmeans_ss, cluster_labels) silhouette

Out[117]:

0.4820199420011818

8.9 簇群分布-Clusters Distribution

In [118]:

columns = ["R","F","M"] plt.figure(figsize=(15,4)) for i,j in enumerate(columns): plt.subplot(1,3,i+1) sns.boxplot(y=df_kmeans[j], x=df_kmeans["clusters"],palette="spring") plt.title(f"{j}",size=13) plt.xlabel("") plt.ylabel("") plt.show()

图片

8.10 3D可视化-Visualization

In [119]:

fig = plt.figure(figsize = (12, 5)) ax = plt.axes(projection ="3d") ax.scatter3D(df_kmeans.R, df_kmeans.F, df_kmeans.M, c=df_kmeans.clusters, cmap='Accent') ax.set_xlabel('R') ax.set_ylabel('F') ax.set_zlabel('M') plt.title('RFM in 3D with Clusters', size=15) ax.set(facecolor='white') plt.show()

图片

tomeunitscriptcodewordxlasalesbotpandasapp留存率热力图token可视化思维导图ide公众号plotly数据分析xlsx
  • 本文作者:李琛
  • 本文链接: https://wapzz.net/post-11854.html
  • 版权声明:本博客所有文章除特别声明外,均默认采用 CC BY-NC-SA 4.0 许可协议。
本站部分内容来源于网络转载,仅供学习交流使用。如涉及版权问题,请及时联系我们,我们将第一时间处理。
文章很赞!支持一下吧 还没有人为TA充电
为TA充电
还没有人为TA充电
0
  • 支付宝打赏
    支付宝扫一扫
  • 微信打赏
    微信扫一扫
感谢支持
文章很赞!支持一下吧
关于作者
2.3W+
5
0
1
WAP站长官方

vivo自研蓝心大模型中文能力第一:已覆盖超2000万用户

上一篇

aigc查重高怎么降:七步解决你的查重烦恼

下一篇
  • 复制图片
按住ctrl可打开默认菜单