DiagrammerGPT:GPT-4主导的颠覆性双层文生图表模型

DiagrammerGPT:GPT-4主导的颠覆性双层文生图表模型

    正在检查是否收录...

近期,北卡罗来纳大学提出了一项重大技术突破,通过将GPT-4充当“规划师”和“审计师”,构建了DiagrammerGPT框架,实现了文本描述生成科学图表的布局规划。该框架利用GPT-4的强大自然语言处理能力指导图表布局生成,创新性地设计了闭环反馈机制,通过迭代优化提高了生成图表的准确性。

在具体实施中,GPT-4首先充当规划师,生成初始规划,包含实体、关系和布局信息。然后,另一个GPT-4充当审计师,评估规划的准确性并提供反馈。这种闭环反馈机制使得规划师能够根据审计师的反馈调整规划布局,进一步提高规划的质量。整个过程的目标是生成更准确、清晰的科学图表。

项目地址:https://github.com/aszala/DiagrammerGPT

在图表生成阶段,研究人员使用DiagramGLIGEN扩散模型,并加入了门控自注意力层,以利用图表规划的布局信息指导图像生成。与原始的GLIGEN模型不同,DiagramGLIGEN能够同时处理文本标签和箭头关系作为布局输入。为了提升文本的清晰度,研究人员使用Pillow库显式渲染文本标签。

在测试数据上的表现显示,DiagrammerGPT在多个量化指标上明显优于基准模型,包括对象、数量、关系和文本渲染准确性。此外,在图表与文本相关性和对象关系的准确性评估方面,DiagrammerGPT分别取得36%和48%的优于基准模型的评分。这一研究标志着在文本生成高精准图表模型领域的重大突破,为科学图表生成提供了更可靠的解决方案。

总体而言,DiagrammerGPT框架的创新和性能优势为文生图表领域带来了重大技术突破,为科学研究和图像生成领域提供了有力的支持。

gptamm准确性gpt-4图表生成图像生成研究人员描述生成准确性评估测试数据处理文本科学研究文生图git注意力文本生成github语言处理解决方案扩散模型自然语言处理自然语言url
  • 本文作者:李琛
  • 本文链接: https://wapzz.net/post-1039.html
  • 版权声明:本博客所有文章除特别声明外,均默认采用 CC BY-NC-SA 4.0 许可协议。
本站部分内容来源于网络转载,仅供学习交流使用。如涉及版权问题,请及时联系我们,我们将第一时间处理。
文章很赞!支持一下吧 还没有人为TA充电
为TA充电
还没有人为TA充电
0
  • 支付宝打赏
    支付宝扫一扫
  • 微信打赏
    微信扫一扫
感谢支持
文章很赞!支持一下吧
关于作者
2.3W+
5
0
1
WAP站长官方

Qt Creator 11 开放源码集成开发环境新增集成终端和 GitHub Copilot 支持

上一篇

whisper.cpp在Windows VS的编译

下一篇
  • 复制图片
按住ctrl可打开默认菜单