Whisper——部署fast-whisper中文语音识别模型

SEO教程2025-06-2447
    正在检查是否收录...

whisper:https://github.com/openai/whisper/tree/main
参考文章:Whisper OpenAI开源语音识别模型

环境配置

pip install faster-whisper transformers 

准备tiny模型

需要其他版本的可以自己下载:https://huggingface.co/openai

原始中文语音模型:
https://huggingface.co/openai/whisper-tiny 
微调后的中文语音模型:
git clone https://huggingface.co/xmzhu/whisper-tiny-zh 
补下一个:tokenizer.json
https://huggingface.co/openai/whisper-tiny/resolve/main/tokenizer.json?download=true 

模型转换

float16
ct2-transformers-converter --model whisper-tiny-zh/ --output_dir whisper-tiny-zh-ct2 --copy_files tokenizer.json preprocessor_config.json --quantization float16 
int8
ct2-transformers-converter --model whisper-tiny-zh/ --output_dir whisper-tiny-zh-ct2-int8 --copy_files tokenizer.json preprocessor_config.json --quantization int8 

代码

from faster_whisper import WhisperModel # model_size = "whisper-tiny-zh-ct2" # model_size = "whisper-tiny-zh-ct2-int8" # Run on GPU with FP16 # model = WhisperModel(model_size, device="cuda", compute_type="float16") model = WhisperModel(model_size, device="cpu", compute_type="int8") # or run on GPU with INT8 # model = WhisperModel(model_size, device="cuda", compute_type="int8_float16") # or run on CPU with INT8 # model = WhisperModel(model_size, device="cpu", compute_type="int8") segments, info = model.transcribe("output_file.wav", beam_size=5, language='zh') print("Detected language '%s' with probability %f" % (info.language, info.language_probability)) for segment in segments: print("[%.2fs -> %.2fs] %s" % (segment.start, segment.end, segment.text)) 

codewhisperjsonopenaihuggingfacetokencputransformertransformerstpugpugit语音模型clone语音识别githuburl